Abstract

Excessive foot arch deformation is associated with plantar tissue overload and ligamentous injury pathologies. Finite element (FE) analysis, as an effective tool for modeling and simulation, has been utilized clinically for providing insights into arch biomechanics. This systematic scoping review aimed to summarize the current state of computational modeling techniques utilized in arch biomechanics from 2000 onwards and outline the main challenges confronting the further development of accurate models in clinical conditions. English-language searches of the electronic databases were conducted in the Web of Science, PubMed, and Scopus until July 2022. Articles that investigated arch deformation mechanisms by FE modeling were included. The methodological quality was assessed utilizing the Methodological Quality Assessment of Subject-Specific Finite Element Analysis Used in Computational Orthopedics (MQSSFE). Seventeen articles were identified in this systematic scoping review, mostly focusing on constructing models for specific pathological conditions, such as progressive collapsing foot deformity, valgus foot, and posterior tibial tendon dysfunction. However, given the complexity of the arch problem, geometrical simplifications regarding the balance between accurate detail and computational cost and assumptions made in defining modeling parameters (material properties and loading and boundary conditions) may bring challenges to the accuracy and generalizability of models applied to clinical settings. Overall, advances in computational modeling techniques have contributed to reliable foot deformation simulation and analysis in modern personalized medicine.

References

1.
Zhao
,
X.
,
Gu
,
Y.
,
Yu
,
J.
,
Ma
,
Y.
, and
Zhou
,
Z.
,
2020
, “
The Influence of Gender, Age, and Body Mass Index on Arch Height and Arch Stiffness
,”
J. Foot Ankle Surg.
,
59
(
2
), pp.
298
302
.10.1053/j.jfas.2019.08.022
2.
Tao
,
K.
,
Ji
,
W.-T.
,
Wang
,
D.-M.
,
Wang
,
C.-T.
, and
Wang
,
X.
,
2010
, “
Relative Contributions of Plantar Fascia and Ligaments on the Arch Static Stability: A Finite Element Study
,”
Biomed. Tech.
,
55
(
5
), pp.
265
271
.10.1515/bmt.2010.041
3.
Liang
,
J.
,
Yang
,
Y.
,
Yu
,
G.
,
Niu
,
W.
, and
Wang
,
Y.
,
2011
, “
Deformation and Stress Distribution of the Human Foot After Plantar Ligaments Release: A Cadaveric Study and Finite Element Analysis
,”
Sci. China Life Sci.
,
54
(
3
), pp.
267
271
.10.1007/s11427-011-4139-0
4.
Cen
,
X.
,
Lu
,
Z.
,
Baker
,
J. S.
,
István
,
B.
, and
Gu
,
Y.
,
2021
, “
A Comparative Biomechanical Analysis During Planned and Unplanned Gait Termination in Individuals With Different Arch Stiffnesses
,”
Appl. Sci.
,
11
(
4
), p.
1871
.10.3390/app11041871
5.
Williams
, III
,
D. S.
,
McClay
,
I. S.
, and
Hamill
,
J.
,
2001
, “
Arch Structure and Injury Patterns in Runners
,”
Clin. Biomech.
,
16
(
4
), pp.
341
347
.10.1016/S0268-0033(01)00005-5
6.
Dahle
,
L. K.
,
Mueller
,
M.
,
Delitto
,
A.
, and
Diamond
,
J. E.
,
1991
, “
Visual Assessment of Foot Type and Relationship of Foot Type to Lower Extremity Injury
,”
J. Orthop. Sport Phys.
,
14
(
2
), pp.
70
74
.10.2519/jospt.1991.14.2.70
7.
Burns
,
J.
,
Crosbie
,
J.
,
Hunt
,
A.
, and
Ouvrier
,
R.
,
2005
, “
The Effect of Pes Cavus on Foot Pain and Plantar Pressure
,”
Clin. Biomech.
,
20
(
9
), pp.
877
882
.10.1016/j.clinbiomech.2005.03.006
8.
Rao
,
S.
,
Song
,
J.
,
Kraszewski
,
A.
,
Backus
,
S.
,
Ellis
,
S. J.
,
Md
,
J. T. D.
, and
Hillstrom
,
H. J.
,
2011
, “
The Effect of Foot Structure on 1st Metatarsophalangeal Joint Flexibility and Hallucal Loading
,”
Gait Posture
,
34
(
1
), pp.
131
137
.10.1016/j.gaitpost.2011.02.028
9.
Levy
,
J. C.
,
Mizel
,
M. S.
,
Wilson
,
L. S.
,
Fox
,
W.
,
McHale
,
K.
,
Taylor
,
D. C.
, and
Temple
,
H. T.
,
2006
, “
Incidence of Foot and Ankle Injuries in West Point Cadets With Pes Planus Compared to the General Cadet Population
,”
Foot Ankle Int.
,
27
(
12
), pp.
1060
1064
.10.1177/107110070602701211
10.
Tong
,
J. W. K.
, and
Kong
,
P. W.
,
2013
, “
Association Between Foot Type and Lower Extremity Injuries: Systematic Literature Review With Meta-Analysis
,”
J. Orthop. Sport Phys.
,
43
(
10
), pp.
700
714
.10.2519/jospt.2013.4225
11.
Bus
,
S. A.
, and
de Lange
,
A.
,
2005
, “
A Comparison of the 1-Step, 2-Step, and 3-Step Protocols for Obtaining Barefoot Plantar Pressure Data in the Diabetic Neuropathic Foot
,”
Clin. Biomech.
,
20
(
9
), pp.
892
899
.10.1016/j.clinbiomech.2005.05.004
12.
Sun
,
D.
,
Song
,
Y.
,
Cen
,
X.
,
Wang
,
M.
,
Baker
,
J. S.
, and
Gu
,
Y.
,
2022
, “
Workflow Assessing the Effect of Achilles Tendon Rupture on Gait Function and Metatarsal Stress: Combined Musculoskeletal Modeling and Finite Element Analysis
,”
Proc. Inst. Mech. Eng. Part H
,
236
(
5
), pp.
676
685
.10.1177/09544119221085795
13.
Zhang
,
B.
, and
Lu
,
Q.
,
2020
, “
A Current Review of Foot Disorder and Plantar Pressure Alternation in the Elderly
,”
Phys. Act. Health
,
4
(
1
), pp.
95
106
.10.5334/paah.57
14.
Gu
,
Y.
,
Ren
,
X.
,
Li
,
J.
,
Lake
,
M.
,
Zhang
,
Q.
, and
Zeng
,
Y.
,
2010
, “
Computer Simulation of Stress Distribution in the Metatarsals at Different Inversion Landing Angles Using the Finite Element Method
,”
Int. Orthop.
,
34
(
5
), pp.
669
676
.10.1007/s00264-009-0856-4
15.
Behforootan
,
S.
,
Chatzistergos
,
P.
,
Naemi
,
R.
, and
Chockalingam
,
N.
,
2017
, “
Finite Element Modelling of the Foot for Clinical Application: A Systematic Review
,”
Med. Eng. Phys.
,
39
, pp.
1
11
.10.1016/j.medengphy.2016.10.011
16.
Song
,
Y.
,
Shao
,
E.
,
Bíró
,
I.
,
Baker
,
J. S.
, and
Gu
,
Y.
,
2022
, “
Finite Element Modelling for Footwear Design and Evaluation: A Systematic Scoping Review
,”
Heliyon
,
8
(
10
), p.
e10940
.10.1016/j.heliyon.2022.e10940
17.
Wong
,
D. W.-C.
,
Chen
,
T. L.-W.
,
Peng
,
Y.
,
Lam
,
W.-K.
,
Wang
,
Y.
,
Ni
,
M.
,
Niu
,
W.
, and
Zhang
,
M.
,
2021
, “
An Instrument for Methodological Quality Assessment of Single-Subject Finite Element Analysis Used in Computational Orthopaedics
,”
Med. Novel Tech. Dev.
,
11
, p.
100067
.10.1016/j.medntd.2021.100067
18.
Song
,
Y.
,
Cen
,
X.
,
Zhang
,
Y.
,
Bíró
,
I.
,
Ji
,
Y.
, and
Gu
,
Y.
,
2022
, “
Development and Validation of a Subject-Specific Coupled Model for Foot and Sports Shoe Complex: A Pilot Computational Study
,”
Bioengineering
,
9
(
10
), p.
553
.10.3390/bioengineering9100553
19.
Cifuentes-De la Portilla
,
C.
,
Larrainzar-Garijo
,
R.
, and
Bayod
,
J.
,
2019
, “
Analysis of the Main Passive Soft Tissues Associated With Adult Acquired Flatfoot Deformity Development: A Computational Modeling Approach
,”
J. Biomech.
,
84
, pp.
183
190
.10.1016/j.jbiomech.2018.12.047
20.
Chen
,
T. L.-W.
,
Wong
,
D. W.-C.
,
Wang
,
Y.
,
Lin
,
J.
, and
Zhang
,
M.
,
2019
, “
Foot Arch Deformation and Plantar Fascia Loading During Running With Rearfoot Strike and Forefoot Strike: A Dynamic Finite Element Analysis
,”
J. Biomech.
,
83
, pp.
260
272
.10.1016/j.jbiomech.2018.12.007
21.
Zhang
,
Y-J.
,
Guo
,
Y.
,
Long
,
X.
,
Du
,
J.-Y.
,
Liu
,
T.
, and
Lin
,
X-J.
,
2021
, “
Analysis of the Main Soft Tissue Stress Associated With Flexible Flatfoot Deformity: A Finite Element Study
,”
Biomech. Model. Mechan.
,
20
(
6
), pp.
2169
2177
.10.1007/s10237-021-01500-1
22.
Cheung
,
J. T. M.
,
Zhang
,
M.
, and
An
,
K. N.
,
2004
, “
Effects of Plantar Fascia Stiffness on the Biomechanical Responses of the Ankle-Foot Complex
,”
Clin. Biomech.
,
19
(
8
), pp.
839
846
.10.1016/j.clinbiomech.2004.06.002
23.
Wang
,
Y.
,
Wong
,
D. W.-C.
, and
Zhang
,
M.
,
2016
, “
Computational Models of the Foot and Ankle for Pathomechanics and Clinical Applications: A Review
,”
Ann. Biomed. Eng.
,
44
(
1
), pp.
213
221
.10.1007/s10439-015-1359-7
24.
Malakoutikhah
,
H.
,
de Cesar Netto
,
C.
,
Madenci
,
E.
, and
Latt
,
L. D.
,
2022
, “
Evaluation of Assumptions in Foot and Ankle Biomechanical Models
,”
Clin. Biomech.
,
100
, p.
105807
.10.1016/j.clinbiomech.2022.105807
25.
Chen
,
Y.-N.
,
Chang
,
C.-W.
,
Li
,
C.-T.
,
Chang
,
C.-H.
, and
Lin
,
C.-F.
,
2015
, “
Finite Element Analysis of Plantar Fascia During Walking: A Quasi-Static Simulation
,”
Foot Ankle Int.
,
36
(
1
), pp.
90
97
.10.1177/1071100714549189
26.
Cheung
,
J. T. M.
,
Zhang
,
M.
, and
An
,
K. N.
,
2006
, “
Effect of Achilles Tendon Loading on Plantar Fascia Tension in the Standing Foot
,”
Clin. Biomech.
,
21
(
2
), pp.
194
203
.10.1016/j.clinbiomech.2005.09.016
27.
Malakoutikhah
,
H.
,
Madenci
,
E.
, and
Latt
,
L. D.
,
2023
, “
A Computational Model of Force Within the Ligaments and Tendons in Progressive Collapsing Foot Deformity
,”
J. Orthop. Res
,
41
(
2
), pp.
396
406
.10.1002/jor.25380
28.
Malakoutikhah
,
H.
,
Madenci
,
E.
, and
Latt
,
L. D.
,
2022
, “
The Impact of Ligament Tears on Joint Contact Mechanics in Progressive Collapsing Foot Deformity: A Finite Element Study
,”
Clin. Biomech.
,
94
, p.
105630
.10.1016/j.clinbiomech.2022.105630
29.
Wong
,
D. W.-C.
,
Wang
,
Y.
,
Leung
,
A. K.-L.
,
Yang
,
M.
, and
Zhang
,
M.
,
2018
, “
Finite Element Simulation on Posterior Tibial Tendinopathy: Load Transfer Alteration and Implications to the Onset of Pes Planus
,”
Clin. Biomech.
,
51
, pp.
10
16
.10.1016/j.clinbiomech.2017.11.001
30.
Guo
,
J.
,
Wang
,
L.
,
Mo
,
Z.
,
Chen
,
W.
, and
Fan
,
Y.
,
2015
, “
Biomechanical Behavior of Valgus Foot in Children With Cerebral Palsy: A Comparative Study
,”
J. Biomech.
,
48
(
12
), pp.
3170
3177
.10.1016/j.jbiomech.2015.07.004
31.
Cifuentes-De la Portilla
,
C.
,
Pasapula
,
C.
,
Gutiérrez-Narvarte
,
B.
,
Larrainzar-Garijo
,
R.
, and
Bayod
,
J.
,
2021
, “
Peroneus Longus Overload Caused by Soft Tissue Deficiencies Associated With Early Adult Acquired Flatfoot: A Finite Element Analysis
,”
Clin. Biomech.
,
86
, p.
105383
.10.1016/j.clinbiomech.2021.105383
32.
Malakoutikhah
,
H.
,
Madenci
,
E.
, and
Latt
,
L. D.
,
2022
, “
The Contribution of the Ligaments in Progressive Collapsing Foot Deformity: A Comprehensive Computational Study
,”
J. Orthop. Res.
,
40
(
9
), pp.
2209
2221
.10.1002/jor.25244
33.
Cifuentes-De la Portilla
,
C.
,
Larrainzar-Garijo
,
R.
, and
Bayod
,
J.
,
2019
, “
Biomechanical Stress Analysis of the Main Soft Tissues Associated With the Development of Adult Acquired Flatfoot Deformity
,”
Clin. Biomech.
,
61
, pp.
163
171
.10.1016/j.clinbiomech.2018.12.009
34.
Sun
,
P.-C.
,
Shih
,
S.-L.
,
Chen
,
Y.-L.
,
Hsu
,
Y.-C.
,
Yang
,
R.-C.
, and
Chen
,
C.-S.
,
2012
, “
Biomechanical Analysis of Foot With Different Foot Arch Heights: A Finite Element Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
6
), pp.
563
569
.10.1080/10255842.2010.550165
35.
Wang
,
C.
,
He
,
X.
,
Zhang
,
Z.
,
Lai
,
C.
,
Li
,
X.
,
Zhou
,
Z.
, and
Ruan
,
K.
,
2021
, “
Three-Dimensional Finite Element Analysis and Biomechanical Analysis of Midfoot Von Mises Stress Levels in Flatfoot, Clubfoot, and Lisfranc Joint Injury
,”
Med. Sci. Monitor
,
27
, p.
e931969
.10.12659/MSM.931969
36.
Phan
,
P. K.
,
Vo
,
A. T. N.
,
Bakhtiarydavijani
,
A.
,
Burch
,
R.
,
Smith
,
B.
,
Ball
,
J. E.
,
Chander
,
H.
,
Knight
,
A.
, and
Prabhu
,
R. K.
,
2021
, “
In Silico Finite Element Analysis of the Foot Ankle Complex Biomechanics: A Literature Review
,”
ASME J. Biomech. Eng.
,
143
(
9
), p.
090802
.10.1115/1.4050667
37.
Morales-Orcajo
,
E.
,
Bayod
,
J.
, and
Barbosa de Las Casas
,
E.
,
2016
, “
Computational Foot Modeling: Scope and Applications
,”
Arch. Comput. Methods Eng.
,
23
(
3
), pp.
389
416
.10.1007/s11831-015-9146-z
38.
Zhu
,
J.
, and
Forman
,
J.
,
2022
, “
A Review of Finite Element Models of Ligaments in the Foot and Considerations for Practical Application
,”
ASME J. Biomech. Eng.
,
144
(
8
), p.
080801
.10.1115/1.4053401
39.
Viceconti
,
M.
,
Olsen
,
S.
,
Nolte
,
L.-P.
, and
Burton
,
K.
,
2005
, “
Extracting Clinically Relevant Data From Finite Element Simulations
,”
Clin. Biomech.
,
20
(
5
), pp.
451
454
.10.1016/j.clinbiomech.2005.01.010
40.
Nie
,
B.
,
Panzer
,
M. B.
,
Mane
,
A.
,
Mait
,
A. R.
,
Donlon
,
J.-P.
,
Forman
,
J. L.
, and
Kent
,
R. W.
,
2016
, “
A Framework for Parametric Modeling of Ankle Ligaments to Determine the in Situ Response Under Gross Foot Motion
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
12
), pp.
1254
1265
.10.1080/10255842.2015.1125474
41.
Arangio
,
G. A.
,
Reinert
,
K. L.
, and
Salathe
,
E. P.
,
2004
, “
A Biomechanical Model of the Effect of Subtalar Arthroereisis on the Adult Flexible Flat Foot
,”
Clin. Biomech.
,
19
(
8
), pp.
847
852
.10.1016/j.clinbiomech.2003.11.002
42.
Wang
,
M.
,
Li
,
S.
,
Teo
,
E.-C.
,
Fekete
,
G.
, and
Gu
,
Y.
,
2021
, “
The Influence of Heel Height on Strain Variation of Plantar Fascia During High Heel Shoes Walking-Combined Musculoskeletal Modeling and Finite Element Analysis
,”
Front. Bioeng. Biotechnol.
,
9
, p.
791238
.10.3389/fbioe.2021.791238
43.
Xiang
,
L.
,
Mei
,
Q.
,
Wang
,
A.
,
Shim
,
V.
,
Fernandez
,
J.
, and
Gu
,
Y.
,
2022
, “
Evaluating Function in the Hallux Valgus Foot Following a 12-Week Minimalist Footwear Intervention: A Pilot Computational Analysis
,”
J. Biomech.
,
132
, p.
110941
.10.1016/j.jbiomech.2022.110941
44.
Iaquinto
,
J. M.
, and
Wayne
,
J. S.
,
2011
, “
Effects of Surgical Correction for the Treatment of Adult Acquired Flatfoot Deformity: A Computational Investigation
,”
J. Orthop. Res.
,
29
(
7
), pp.
1047
1054
.10.1002/jor.21379
45.
Smyth
,
N. A.
,
Aiyer
,
A. A.
,
Kaplan
,
J. R.
,
Carmody
,
C. A.
, and
Kadakia
,
A. R.
,
2017
, “
Adult-Acquired Flatfoot Deformity
,”
Eur. J. Orthop. Surg. Traumatol.
,
27
(
4
), pp.
433
439
.10.1007/s00590-017-1945-5
46.
Zhang
,
Q.
,
Zhang
,
Y.
,
Chon
,
T. E.
,
Baker
,
J. S.
, and
Gu
,
Y.
,
2023
, “
Analysis of Stress and Stabilization in Adolescent With Osteoporotic Idiopathic Scoliosis: Finite Element Method
,”
Comput. Methods Biomech. Biomed. Eng.
,
26
(
1
), pp.
12
24
.10.1080/10255842.2022.2044803
47.
Yu
,
L.
, and
Mohamad
,
N. I.
,
2022
, “
Development of Badminton-Specific Footwork Training From Traditional Physical Exercise to Novel Intervention Approaches
,”
Phys. Activity Health
,
6
(
1
), pp.
219
225
.10.5334/paah.207
You do not currently have access to this content.