Abstract

The utilization of lattice-based scaffolds emerging as an advance technique over conventional bio-implants in Bone Tissue Engineering. In this study, totally six lattice structures are considered for permeability and wall shear stress (WSS) investigation. Namely triply periodic minimal surfaces (TPMS)-based Gyroid, Schwarz-P, Schwarz-D, and two beam-based structure—Cubic and Fluorite are compared with the proposed new lattice structure at porosity level of 80%, 75%, and 70%. The proposed new lattice has combine characteristic of Gyroid and Schwarz-D TPMS lattice. The permeability is determined through Darcy's law, where the pressure drop across the lattice structure is calculated using a computational fluid dynamics (CFD) tool at flowrate between 0.2 and 10 ml/min. The Cubic and Schwarz-P lattice structures exhibited the highest permeability but at the cost of a lower active surface area for WSS, measuring below 155 mm2, means least cell proliferation occurs while the permeability value in New Lattice structure is in the ideal range with the enhanced active surface area for WSS (514 mm2). The complex internal curvatures of New Lattice promote the cell proliferation while the through-pore holes allow the efficient cell seeding.

References

1.
Babalola
,
O. M.
, and
Bonassar
,
L. J.
,
2009
, “
Parametric Finite Element Analysis of Physical Stimuli Resulting From Mechanical Stimulation of Tissue Engineered Cartilage
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061014
.10.1115/1.3128672
2.
Almeida
,
H. A.
, and
Bártolo
,
P. J.
,
2012
, “
Structural and Vascular Analysis of Tissue Engineering Scaffolds, Part 1: Numerical Fluid Analysis
,”
Methods Mol. Biol.
,
868
, pp.
183
207
.10.1007/978-1-61779-764-4
3.
Santamaría
,
V. A. A.
,
Malvè
,
M.
,
Duizabo
,
A.
,
Mena Tobar
,
A.
,
Gallego Ferrer
,
G.
,
García Aznar
,
J. M.
,
Doblaré
,
M.
, and
Ochoa
,
I.
,
2013
, “
Computational Methodology to Determine Fluid Related Parameters of Non Regular Three-Dimensional Scaffolds
,”
Ann. Biomed. Eng.
,
41
(
11
), pp.
2367
2380
.10.1007/s10439-013-0849-8
4.
Egan
,
P. F.
,
Ferguson
,
S. J.
, and
Shea
,
K.
,
2017
, “
Design of Hierarchical Three-Dimensional Printed Scaffolds Considering Mechanical and Biological Factors for Bone Tissue Engineering
,”
ASME J. Mech. Des.
,
139
(
6
), p.
061401
.10.1115/1.4036396
5.
Chen
,
G.
,
Xu
,
R.
,
Zhang
,
C.
, and
Lv
,
Y.
,
2017
, “
Responses of MSCs to 3D Scaffold Matrix Mechanical Properties Under Oscillatory Perfusion Culture
,”
ACS Appl. Mater. Interfaces
,
9
(
2
), pp.
1207
1218
.10.1021/acsami.6b10745
6.
Kumar, J., Nirala, N. S., Singh, N. K., Gupta, N., Dwivedi, Y. D., Verma, R., Rai, S. K., and Gupta, M., 2023, “Design, Development and Fluidic Behavior Analysis of Triply Periodic Minimal Surface (TPMS) Based Scaffolds for Bone-Applications,”
Int. J. Interact. Des. Manuf.
, 18, pp. 3077–3087.10.1007/s12008-023-01441-2
7.
Bartnikowski
,
M.
,
Klein
,
T. J.
,
Melchels
,
F. P. W.
, and
Woodruff
,
M. A.
,
2014
, “
Effects of Scaffold Architecture on Mechanical Characteristics and Osteoblast Response to Static and Perfusion Bioreactor Cultures
,”
Biotechnol. Bioeng.
,
111
(
7
), pp.
1440
1451
.10.1002/bit.25200
8.
Ali
,
D.
,
Ozalp
,
M.
,
Blanquer
,
S. B. G.
, and
Onel
,
S.
,
2020
, “
Permeability and Fluid Flow-Induced Wall Shear Stress in Bone Scaffolds With TPMS and Lattice Architectures: A CFD Analysis
,”
Eur. J. Mech.-B/Fluids
,
79
, pp.
376
385
.10.1016/j.euromechflu.2019.09.015
9.
Lipowiecki
,
M.
,
Ryvolová
,
M.
,
Töttösi
,
Á.
,
Kolmer
,
N.
,
Naher
,
S.
,
Brennan
,
S. A.
,
Vázquez
,
M.
, and
Brabazon
,
D.
,
2014
, “
Permeability of Rapid Prototyped Artificial Bone Scaffold Structures
,”
J. Biomed. Mater. Res., Part A
,
102
(
11
), pp.
4127
4135
.10.1002/jbm.a.35084
10.
Castro
,
A. P. G.
,
Pires
,
T.
,
Santos
,
J. E.
,
Gouveia
,
B. P.
, and
Fernandes
,
P. R.
,
2019
, “
Permeability Versus Design in TPMS Scaffolds
,”
Materials (Basel, Switzerland)
,
12
(
8
), p.
1313
.10.3390/ma12081313
11.
Boccaccio
,
A.
,
Uva
,
A. E.
,
Fiorentino
,
M.
,
Lamberti
,
L.
, and
Monno
,
G.
,
2016
, “
A Mechanobiology-Based Algorithm to Optimize the Microstructure Geometry of Bone Tissue Scaffolds
,”
Int. J. Biol. Sci.
,
12
(
1
), pp.
1
17
.10.7150/ijbs.13158
12.
Mahmoud
,
D.
, and
Elbestawi
,
M. A.
,
2019
, “
Selective Laser Melting of Porosity Graded Lattice Structures for Bone Implants
,”
Int. J. Adv. Manuf. Technol.
,
100
(
9–12
), pp.
2915
2927
.10.1007/s00170-018-2886-9
13.
Oladapo
,
B. I.
,
Kayode
,
J. F.
,
Karagiannidis
,
P.
,
Naveed
,
N.
,
Mehrabi
,
H.
, and
Ogundipe
,
K. O.
,
2022
, “
Polymeric Composites of Cubic-Octahedron and Gyroid Lattice for Biomimetic Dental Implants
,”
Mater. Chem. Phys.
,
289
, p.
126454
.10.1016/j.matchemphys.2022.126454
14.
Sharp
,
R.
,
Pelletier
,
M. H.
,
Walsh
,
W. R.
,
Kelly
,
C. N.
, and
Gall
,
K.
,
2022
, “
Corrosion Resistance of 3D Printed Ti6Al4V Gyroid Lattices With Varying Porosity
,”
Materials
,
15
(
14
), p.
4805
.10.3390/ma15144805
15.
Zhang
,
J.
,
Chen
,
X.
,
Sun
,
Y.
,
Yang
,
J.
,
Chen
,
R.
,
Xiong
,
Y.
,
Hou
,
W.
, and
Bai
,
L.
,
2022
, “
Design of a Biomimetic Graded TPMS Scaffold With Quantitatively Adjustable Pore Size
,”
Mater. Des.
,
218
, p.
110665
.10.1016/j.matdes.2022.110665
16.
Bobbert
,
F. S. L.
,
Lietaert
,
K.
,
Eftekhari
,
A. A.
,
Pouran
,
B.
,
Ahmadi
,
S. M.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2017
, “
Additively Manufactured Metallic Porous Biomaterials Based on Minimal Surfaces: A Unique Combination of Topological, Mechanical, and Mass Transport Properties
,”
Acta Biomater.
,
53
, pp.
572
584
.10.1016/j.actbio.2017.02.024
17.
Ali
,
D.
, and
Sen
,
S.
,
2017
, “
Finite Element Analysis of Mechanical Behavior, Permeability and Fluid Induced Wall Shear Stress of High Porosity Scaffolds With Gyroid and Lattice-Based Architectures
,”
J. Mech. Behav. Biomed. Mater.
,
75
, pp.
262
270
.10.1016/j.jmbbm.2017.07.035
18.
Uhrich
,
K. E.
,
Cannizzaro
,
S. M.
,
Langer
,
R. S.
, and
Shakesheff
,
K. M.
,
1999
, “
Polymeric Systems for Controlled Drug Release
,”
Chem. Rev.
,
99
(
11
), pp.
3181
3198
.10.1021/cr940351u
20.
Zerner
,
M.
,
2011
, “
Aux Origines de La Loi de Darcy (1856)
,” Vol.
20
, pp.
29
40
, accessed Feb. 22, 2022, http://journals.openedition.org/dht
22.
Scheidegger
,
A. E.
,
1957
,
The Physics of Flow Through Porous Media
, 3rd ed.,
University of Toronto Press
, Toronto, ON, Canada.
23.
Dias
,
M. R.
,
Fernandes
,
P. R.
,
Guedes
,
J. M.
, and
Hollister
,
S. J.
,
2012
, “
Permeability Analysis of Scaffolds for Bone Tissue Engineering
,”
J. Biomech.
,
45
(
6
), pp.
938
944
.10.1016/j.jbiomech.2012.01.019
24.
Pires
,
T.
,
Santos
,
J.
,
Ruben
,
R. B.
,
Gouveia
,
B. P.
,
Castro
,
A. P. G.
, and
Fernandes
,
P. R.
,
2021
, “
Numerical-Experimental Analysis of the Permeability-Porosity Relationship in Triply Periodic Minimal Surfaces Scaffolds
,”
J. Biomech.
,
117
, p.
110263
.10.1016/j.jbiomech.2021.110263
25.
Olivares
,
A. L.
,
Marsal
,
È.
,
Planell
,
J. A.
, and
Lacroix
,
D.
,
2009
, “
Finite Element Study of Scaffold Architecture Design and Culture Conditions for Tissue Engineering
,”
Biomaterials
,
30
(
30
), pp.
6142
6149
.10.1016/j.biomaterials.2009.07.041
26.
Reich
,
K. M.
, and
Frangos
,
J. A.
,
1991
, “
Effect of Flow on Prostaglandin E2 and Inositol Trisphosphate Levels in Osteoblasts
,”
Am. J. Physiol.
,
261
(
3
), pp.
C428
C432
.10.1152/ajpcell.1991.261.3.C428
27.
Klein‐Nulend
,
J.
,
Van Der Plas
,
A.
,
Semeins
,
C. M.
,
Ajubi
,
N. E.
,
Erangos
,
J. A.
,
Nijweide
,
P. J.
, and
Burger
,
E. H.
,
1995
, “
Sensitivity of Osteocytes to Biomechanical Stress In Vitro
,”
FASEB J.
,
9
(
5
), pp.
441
445
.10.1096/fasebj.9.5.7896017
28.
Cowin
,
S. C.
,
2002
, “
Mechanosensation and Fluid Transport in Living Bone
,”
J. Musculoskelet. Neuronal Interact.
,
2
(
3
), pp.
256
260
.https://www.ismni.org/jmni/pdf/7/Cowin.pdf
29.
Li
,
D.
,
Tang
,
T.
,
Lu
,
J.
, and
Dai
,
K.
,
2009
, “
Effects of Flow Shear Stress and Mass Transport on the Construction of a Large-Scale Tissue-Engineered Bone in a Perfusion Bioreactor
,”
Tissue Eng. Part A
,
15
(
10
), pp.
2773
2783
.10.1089/ten.tea.2008.0540
30.
Zhao
,
F.
,
Lacroix
,
D.
,
Ito
,
K.
,
van Rietbergen
,
B.
, and
Hofmann
,
S.
,
2020
, “
Changes in Scaffold Porosity During Bone Tissue Engineering in Perfusion Bioreactors Considerably Affect Cellular Mechanical Stimulation for Mineralization
,”
Bone Rep.
,
12
, p.
100265
.10.1016/j.bonr.2020.100265
31.
Timercan
,
A.
,
Sheremetyev
,
V.
, and
Brailovski
,
V.
,
2021
, “
Mechanical Properties and Fluid Permeability of Gyroid and Diamond Lattice Structures for Intervertebral Devices: Functional Requirements and Comparative Analysis
,”
Sci. Technol. Adv. Mater.
,
22
(
1
), pp.
285
300
.10.1080/14686996.2021.1907222
32.
Lee
,
K. W.
,
Wang
,
S.
,
Lu
,
L.
,
Jabbari
,
E.
,
Currier
,
B. L.
, and
Yaszemski
,
M. J.
,
2006
, “
Fabrication and Characterization of Poly(Propylene Fumarate) Scaffolds With Controlled Pore Structures Using 3-Dimensional Printing and Injection Molding
,”
Tissue Eng.
,
12
(
10
), pp.
2801
2811
.10.1089/ten.2006.12.2801
33.
Sarparast
,
Z.
,
Abdoli
,
R.
,
Rahbari
,
A.
,
Varmazyar
,
M.
, and
Kashyzadeh
,
K. R.
,
2020
, “
Experimental and Numerical Analysis of Permeability in Porous Media
,”
Int. J. Eng.
,
33
(
11
), pp.
2408
2415
.10.5829/ije.2020.33.11b.31
34.
Baroud
,
G.
,
Falk
,
R.
,
Crookshank
,
M.
,
Sponagel
,
S.
, and
Steffen
,
T.
,
2004
, “
Experimental and Theoretical Investigation of Directional Permeability of Human Vertebral Cancellous Bone for Cement Infiltration
,”
J. Biomech.
,
37
(
2
), pp.
189
196
.10.1016/S0021-9290(03)00246-X
35.
Engel
,
N.
,
Fechner
,
C.
,
Voges
,
A.
,
Ott
,
R.
,
Stenzel
,
J.
,
Siewert
,
S.
,
Bergner
,
C.
,
Khaimov
,
V.
,
Liese
,
J.
,
Schmitz
,
K. P.
,
Krause
,
B. J.
, and
Frerich
,
B.
,
2021
, “
An Optimized 3D-Printed Perfusion Bioreactor for Homogeneous Cell Seeding in Bone Substitute Scaffolds for Future Chairside Applications
,”
Sci. Rep.
,
11
(
1
), p.
22228
.10.1038/s41598-021-01516-8
36.
Gabetti
,
S.
,
Masante
,
B.
,
Cochis
,
A.
,
Putame
,
G.
,
Sanginario
,
A.
,
Armando
,
I.
,
Fiume
,
E.
,
Scalia
,
A. C.
,
Daou
,
F.
, et al.,
2022
, “
An Automated 3D-Printed Perfusion Bioreactor Combinable With Pulsed Electromagnetic Field Stimulators for Bone Tissue Investigations
,”
Sci. Rep.
,
12
(
1
), p.
13859
.10.1038/s41598-022-18075-1
37.
Zhao
,
F.
,
van Rietbergen
,
B.
,
Ito
,
K.
, and
Hofmann
,
S.
,
2020
, “
Fluid Flow-Induced Cell Stimulation in Bone Tissue Engineering Changes Due to Interstitial Tissue Formation In Vitro
,”
Int. J. Numer. Methods Biomed. Eng.
,
36
(
6
), p.
e3342
.10.1002/cnm.3342
38.
Truscello
,
S.
,
Kerckhofs
,
G.
,
Van Bael
,
S.
,
Pyka
,
G.
,
Schrooten
,
J.
, and
Van Oosterwyck
,
H.
,
2012
, “
Prediction of Permeability of Regular Scaffolds for Skeletal Tissue Engineering: A Combined Computational and Experimental Study
,”
Acta Biomater.
,
8
(
4
), pp.
1648
1658
.10.1016/j.actbio.2011.12.021
39.
Egger
,
D.
,
Fischer
,
M.
,
Clementi
,
A.
,
Ribitsch
,
V.
,
Hansmann
,
J.
, and
Kasper
,
C.
,
2017
, “
Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture
,”
Bioengineering
,
4
(
2
), p.
51
.10.3390/bioengineering4020051
40.
Zhao
,
F.
,
van Rietbergen
,
B.
,
Ito
,
K.
, and
Hofmann
,
S.
,
2018
, “
Flow Rates in Perfusion Bioreactors to Maximise Mineralisation in Bone Tissue Engineering In Vitro
,”
J. Biomech.
,
79
, pp.
232
237
.10.1016/j.jbiomech.2018.08.004
41.
Panek
,
M.
,
Antunović
,
M.
,
Pribolšan
,
L.
,
Ivković
,
A.
,
Gotić
,
M.
,
Vukasović
,
A.
,
Mihalić
,
K. C.
,
Pušić
,
M.
,
Jurkin
,
T.
, and
Marijanović
,
I.
,
2019
, “
Bone Tissue Engineering in a Perfusion Bioreactor Using Dexamethasone-Loaded Peptide Hydrogel
,”
Materials
,
12
(
6
), p.
919
.10.3390/ma12060919
42.
Beşkardeş
,
I. G.
,
Aydın
,
G.
,
Bektaş
,
Ş.
,
Cengiz
,
A.
, and
Gümüşderelioğlu
,
M.
,
2018
, “
A Systematic Study for Optimal Cell Seeding and Culture Conditions in a Perfusion Mode Bone-Tissue Bioreactor
,”
Biochem. Eng. J.
,
132
, pp.
100
111
.10.1016/j.bej.2018.01.006
43.
Abstract
,
G.
,
2017
, “
Flow Dynamics and HSPC Homing Bone Marrow Microvessels
,”
Cell Rep.
,
18
(
7
), pp.
1804
1816
.10.1016/j.celrep.2017.01.042
44.
Kohles
,
S. S.
,
Roberts
,
J. B.
,
Upton
,
M. L.
,
Wilson
,
C. G.
,
Bonassar
,
L. J.
, and
Schlichting
,
A. L.
,
2001
, “
Direct Perfusion Measurements of Cancellous Bone Anisotropic Permeability
,”
J. Biomech.
,
34
(
9
), pp.
1197
1202
.10.1016/S0021-9290(01)00082-3
45.
Lim
,
T. H.
, and
Hong
,
J. H.
,
2000
, “
Poroelastic Properties of Bovine Vertebral Trabecular Bone
,”
J. Orthopaedic Res.
,
18
(
4
), pp.
671
677
.10.1002/jor.1100180421
46.
Nauman
,
E. A.
,
Fong
,
K. E.
, and
Keaveny
,
T. M.
,
1999
, “
Dependence of Intertrabecular Permeability on Flow Direction and Anatomic Site
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
517
524
.10.1114/1.195
47.
Gabetti
,
S.
,
Masante
,
B.
,
Schiavi
,
A.
,
Scatena
,
E.
,
Zenobi
,
E.
,
Israel
,
S.
,
Sanginario
,
A.
,
Del Gaudio
,
C.
,
Audenino
,
A.
, et al.,
2024
, “
Adaptable Test Bench for ASTM-Compliant Permeability Measurement of Porous Scaffolds for Tissue Engineering
,”
Sci. Rep.
,
14
(
1
), p.
1722
.10.1038/s41598-024-52159-4
48.
Zhang
,
X.
,
Tiainen
,
H.
, and
Haugen
,
H. J.
,
2019
, “
Comparison of Titanium Dioxide Scaffold With Commercial Bone Graft Materials Through Micro-Finite Element Modelling in Flow Perfusion
,”
Med. Biol. Eng. Comput.
,
57
(
1
), pp.
311
324
.10.1007/s11517-018-1884-2
You do not currently have access to this content.