Abstract

Current studies on human locomotion focus mainly on solid ground walking conditions. In this paper, we present a biomechanical comparison of human walking locomotion on solid ground and sand. A novel dataset containing three-dimensional motion and biomechanical data from 20 able-bodied adults for walking locomotion on solid ground and sand is collected. We present the data collection methods and report the sensor data along with the kinematic and kinetic profiles of joint biomechanics. The results reveal significant gait adaptations to the yielding terrain (i.e., sand), such as increased stance duration, reduced push-off force, and altered joint angles and moments. Specifically, the knee angle during the gait cycle on sand shows a delayed peak flexion and an increased overall magnitude, highlighting an adaptation to maintain stability on yielding terrain. These adjustments, including changes in joint timing and energy conservation mechanisms, provide insights into the motion control strategies humans adopt to navigate on yielding terrains. The dataset, containing synchronized ground reaction forces (GRFs) and kinematic data, offers a valuable resource for further exploration in foot–terrain interactions and human walking assistive devices development on yielding terrains.

References

1.
Camargo
,
J.
,
Ramanathan
,
A.
,
Flanagan
,
W.
, and
Young
,
A.
,
2021
, “
A Comprehensive, Open-Source Dataset of Lower Limb Biomechanics in Multiple Conditions of Stairs, Ramps, and Level-Ground Ambulation and Transitions
,”
J. Biomech.
,
119
, p.
110320
.10.1016/j.jbiomech.2021.110320
2.
Kowalsky
,
D. B.
,
Rebula
,
J. R.
,
Ojeda
,
L. V.
,
Adamczyk
,
P. G.
, and
Kuo
,
A. D.
,
2021
, “
Human Walking in the Real World: Interactions Between Terrain Type, Gait Parameters, and Energy Expenditure
,”
PLoS One
,
16
(
1
), p.
e0228682
.10.1371/journal.pone.0228682
3.
Svenningsen
,
F. P.
,
de Zee
,
M.
, and
Oliveira
,
A. S.
,
2019
, “
The Effect of Shoe and Floor Characteristics on Walking Kinematics
,”
Hum. Mov. Sci.
,
66
, pp.
63
72
.10.1016/j.humov.2019.03.014
4.
Zamparo
,
P.
,
Perini
,
R.
,
Orizio
,
C.
,
Sacher
,
M.
, and
Ferretti
,
G.
,
1992
, “
The Energy Cost of Walking or Running on Sand
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
65
(
2
), pp.
183
187
.10.1007/BF00705078
5.
Grant
,
B.
,
Charles
,
J.
,
Geraghty
,
B.
,
Gardiner
,
J.
,
D'Août
,
K.
,
Falkingham
,
P. L.
, and
Bates
,
K. T.
,
2022
, “
Why Does the Metabolic Cost of Walking Increase on Compliant Substrates?
,”
J. R. Soc. Interface
,
19
(
196
), p.
20220483
.10.1098/rsif.2022.0483
6.
Lejeune
,
T. M.
,
Willems
,
P. A.
, and
Heglund
,
N. C.
,
1998
, “
Mechanics and Energetics of Human Locomotion on Sand
,”
J. Exp. Biol.
,
201
(
13
), pp.
2071
2080
.10.1242/jeb.201.13.2071
7.
Panebianco
,
G. P.
,
Bisi
,
M. C.
,
Mangia
,
A. L.
,
Fantozzi
,
S.
, and
Stagni
,
R.
,
2021
, “
Quantitative Characterization of Walking on Sand Inecological Conditions: Speed, Temporal Segmentation, and Variability
,”
Gait Posture
,
86
, pp.
211
216
.10.1016/j.gaitpost.2021.03.019
8.
Chen
,
X.
,
Yi
,
J.
, and
Wang
,
H.
,
2023
, “
Energy Efficient Foot-Shape Design for Bipedal Walkers on Granular Terrain
,”
IFAC-PapersOnLine
,
56
(
3
), pp.
601
606
.10.1016/j.ifacol.2023.12.090
9.
Chen
,
X.
,
Anikode
,
A.
,
Yi
,
J.
, and
Liu
,
T.
,
2024
, “
Foot Shape-Dependent Resistive Force Model for Bipedal Walkers on Granular Terrains
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Yokohama, Japan, May 13–17, pp.
13093
13099
.10.1109/ICRA57147.2024.10610190
10.
Holowka
,
N. B.
,
Kraft
,
T. S.
,
Wallace
,
I. J.
,
Gurven
,
M.
, and
Venkataraman
,
V. V.
,
2022
, “
Forest Terrains Influence Walking Kinematics Among Indigenous Tsimane of the Bolivian Amazon
,”
Evol. Hum. Sci.
,
4
, p.
e19
.10.1017/ehs.2022.13
11.
Panizzolo
,
F. A.
,
Lee
,
S.
,
Miyatake
,
T.
,
Rossi
,
D. M.
,
Siviy
,
C.
,
Speeckaert
,
J.
,
Galiana
,
I.
, and
Walsh
,
C. J.
,
2017
, “
Lower Limb Biomechanical Analysis During an Unanticipated Step on a Bump Reveals Specific Adaptations of Walking on Uneven Terrains
,”
J. Exp. Biol.
,
220
(
22
), pp.
4169
4176
.10.1242/jeb.161158
12.
Sanchez-Sanchez
,
J.
,
Martinez-Rodriguez
,
A.
,
Felipe
,
J. L.
,
Hernandez-Martin
,
A.
,
Ubago-Guisado
,
E.
,
Bangsbo
,
J.
,
Gallardo
,
L.
, and
Garcia-Unanue
,
J.
,
2020
, “
Effect of Natural Turf, Artificial Turf, and Sand Surfaces on Sprint Performance. A Systematic Review and Meta-Analysis
,”
Int. J. Environ. Res. Public Health
,
17
(
24
), p.
9478
.10.3390/ijerph17249478
13.
Xu
,
H.
,
Wang
,
Y.
,
Greenland
,
K.
,
Bloswick
,
D.
, and
Merryweather
,
A.
,
2015
, “
The Influence of Deformation Height on Estimating the Center of Pressure During Level and Cross-Slope Walking on Sand
,”
Gait Posture
,
42
(
2
), pp.
110
115
.10.1016/j.gaitpost.2015.04.015
14.
Jatsun
,
S.
,
Savin
,
S.
, and
Yatsun
,
A.
,
2018
, “
Walking Pattern Generation Method for an Exoskeleton Moving on Uneven Terrain
,”
Proceedings of the 20th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
, Porto, Portugal, Sept. 11–13, pp.
13
20
.10.1142/9789813231047_0005
15.
Li
,
Z.
,
Li
,
X.
,
Li
,
Q.
,
Su
,
H.
,
Kan
,
Z.
, and
He
,
W.
,
2022
, “
Human-in-the-Loop Control of Soft Exosuits Using Impedance Learning on Different Terrains
,”
IEEE Trans. Rob.
,
38
(
5
), pp.
2979
2993
.10.1109/TRO.2022.3160052
16.
Kim
,
M.
, and
Lee
,
D.
,
2017
, “
Development of an IMU-Based Foot-Ground Contact Detection (FGCD) Algorithm
,”
Ergonomics
,
60
(
3
), pp.
384
403
.10.1080/00140139.2016.1174314
17.
Trkov
,
M.
,
Chen
,
K.
,
Yi
,
J.
, and
Liu
,
T.
,
2019
, “
Inertial Sensor-Based Slip Detection in Human Walking
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
1
), pp.
348
360
.10.1109/TASE.2018.2884723
18.
Knuth
,
T.
, and
Groves
,
P.
,
2023
, “
IMU Based Context Detection of Changes in the Terrain Topography
,”
2023 IEEE/ION Position, Location and Navigation Symposium
, Monterey, CA, Apr. 24–27, pp.
680
690
.10.1109/PLANS53410.2023.10140086
19.
Medrano
,
R. L.
,
Thomas
,
G. C.
,
Keais
,
C. G.
,
Rouse
,
E. J.
, and
Gregg
,
R. D.
,
2023
, “
Real-Time Gait Phase and Task Estimation for Controlling a Powered Ankle Exoskeleton on Extremely Uneven Terrain
,”
IEEE Trans. Rob.
,
39
(
3
), pp.
2170
2182
.10.1109/TRO.2023.3235584
20.
Dewolf
,
A.
,
Lejeune
,
T.
, and
Willems
,
P.
,
2019
, “
The On-Off Ground Asymmetry During Running on Sand
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
Suppl. 1
), pp.
S291
S293
.10.1080/10255842.2020.1714917
21.
Jafarnezhadgero
,
A.
,
Fatollahi
,
A.
,
Amirzadeh
,
N.
,
Siahkouhian
,
M.
, and
Granacher
,
U.
,
2019
, “
Ground Reaction Forces and Muscle Activity While Walking on Sand Versus Stable Ground in Individuals With Pronated Feet Compared With Healthy Controls
,”
PLoS One
,
14
(
9
), p.
e0223219
.10.1371/journal.pone.0223219
22.
Jafarnezhadgero
,
A.
,
Amirzadeh
,
N.
,
Fatollahi
,
A.
,
Siahkouhian
,
M.
,
Oliveira
,
A. S.
, and
Granacher
,
U.
,
2022
, “
Effects of Running on Sand vs. Stable Ground on Kinetics and Muscle Activities in Individuals With Over-Pronated Feet
,”
Front. Physiol.
,
12
, p.
822024
.10.3389/fphys.2021.822024
23.
D'Août
,
K.
,
Meert
,
L.
,
Van Gheluwe
,
B.
,
De Clercq
,
D.
, and
Aerts
,
P.
,
2010
, “
Experimentally Generated Footprints in Sand: Analysis and Consequences for the Interpretation of Fossil and Forensic Footprints
,”
Am. J. Phys. Anthropol.
,
141
(
4
), pp.
515
525
.10.1002/ajpa.21169
24.
Grant
,
B. F.
,
2023
, “
How Are Human Gait and Energetics Modified When Walking Over Substrates of Varying Compliance?
,”
Ph.D. thesis
,
The University of Liverpool
,
Liverpool, UK
.https://livrepository.liverpool.ac.uk/3168955/
25.
Grant
,
B. F.
,
Charles
,
J. P.
,
D'Août
,
K.
,
Falkingham
,
P. L.
, and
Bates
,
K. T.
,
2024
, “
Human Walking Biomechanics on Sand Substrates of Varying Foot Sinking Depth
,”
J. Exp. Biol.
,
227
(
21
), p.
jeb246787
.10.1242/jeb.246787
26.
Zhu
,
C.
,
Chen
,
X.
, and
Yi
,
J.
,
2024
, “
Assistive Control of Knee Exoskeletons for Human Walking on Granular Terrains
,” IEEE Trans. Biomed. Eng.,
arXiv.2411.11777
.10.48550/arXiv.2411.11777
27.
MacLellan
,
M. J.
, and
Patla
,
A. E.
,
2006
, “
Adaptations of Walking Pattern on a Compliant Surface to Regulate Dynamic Stability
,”
Exp. Brain Res.
,
173
(
3
), pp.
521
530
.10.1007/s00221-006-0399-5
28.
Shamaei
,
K.
,
Sawicki
,
G. S.
, and
Dollar
,
A. M.
,
2013
, “
Estimation of Quasi-Stiffness of the Human Hip in the Stance Phase of Walking
,”
PLoS One
,
8
(
12
), p.
e81841
.10.1371/journal.pone.0081841
29.
van den Berg
,
M. E.
,
Barr
,
C. J.
,
McLoughlin
,
J. V.
, and
Crotty
,
M.
,
2017
, “
Effect of Walking on Sand on Gait Kinematics in Individuals With Multiple Sclerosis
,”
Mult. Scler. Relat. Disord.
,
16
, pp.
15
21
.10.1016/j.msard.2017.05.008
30.
Huang
,
T.-H.
,
Zhang
,
S.
,
Yu
,
S.
,
MacLean
,
M. K.
,
Zhu
,
J.
,
Di Lallo
,
A.
,
Jiao
,
C.
,
Bulea
,
T. C.
,
Zheng
,
M.
, and
Su
,
H.
,
2022
, “
Modeling and Stiffness-Based Continuous Torque Control of Lightweight Quasi-Direct-Drive Knee Exoskeletons for Versatile Walking Assistance
,”
IEEE Trans. Rob.
,
38
(
3
), pp.
1442
1459
.10.1109/TRO.2022.3170287
31.
Zhu
,
C.
, and
Yi
,
J.
,
2023
, “
Knee Exoskeleton-Enabled Balance Control of Human Walking Gait With Unexpected Foot Slip
,”
IEEE Rob. Autom. Lett.
,
8
(
11
), pp.
7751
7758
.10.1109/LRA.2023.3322082
32.
Huber
,
G.
,
Jaitner
,
T.
, and
Schmidt
,
M.
,
2022
, “
Acute Effects of Minimalist Shoes on Biomechanical Gait Parameters in Comparison to Walking Barefoot and in Cushioned Shoes: A Randomised Crossover Study
,”
Footwear Sci.
,
14
(
2
), pp.
123
130
.10.1080/19424280.2022.2057593
33.
Agarwal
,
S.
,
Karsai
,
A.
,
Goldman
,
D. I.
, and
Kamrin
,
K.
,
2021
, “
Efficacy of Simple Continuum Models for Diverse Granular Intrusions
,”
Soft Matter
,
17
(
30
), pp.
7196
7209
.10.1039/D1SM00130B
34.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.