Abstract

External fixators are widely used in orthopedics for the purposes of fracture reduction and bone deformity correction. Since there is nonlinear mapping between the joint and operation spaces of the external fixator, bone correction trajectories achieved by equally adjusting the length of the struts in the joint space are usually not the trajectories that clinicians expect. Based on two different adjustment strategies, a new strategy considering bone end-plane orientation and the shortest growth path is proposed to plan the position and orientation of the distal bone end, which is named joint adjustment for equal bone distraction. By proposing the inverse and forward kinematic solutions of an Ortho-SUV external fixator, correction trajectories with three different adjustment strategies are generated and compared, and the bone shapes for each strategy are modeled. The results obtained by comparative analysis indicate that a smooth and uniformly spaced linear trajectory can be acquired using the new adjustment strategy, which can avoid bone end interference and maintain an optimal distraction rate of 1.03 mm/day, with only a 3% error compared with 1 mm/day. The new strategy can perform multiplane corrections simultaneously and is beneficial for stimulating the growth of new bone tissue.

References

References
1.
Vito
,
G. R.
,
Talarico
,
L. M.
, and
Kanuck
,
D. M.
,
2003
, “
Use of External Fixation to Correct Deformities of the Lower Leg
,”
Clin. Podiatric Med. Surg.
,
20
(
1
), pp.
119
157
.10.1016/S0891-8422(02)00056-3
2.
Gregorio
,
R. D.
, and
Parenti-Castelli
,
V.
,
2002
, “
Fixation Devices for Long Bone Fracture Reduction: An overview and New Suggestions
,”
J. Intell. Robot. Syst.
,
34
(
3
), pp.
265
278
.10.1023/A:1016307502887
3.
Noonan
,
K. J.
,
Leyes
,
M.
,
Forriol
,
F.
, and
Canadell
,
A. J.
,
1998
, “
Distraction Osteogenesis of the Lower Extremity With Use of Monolateral External Fixation: A Study of Two Hundred and Sixty-One Femora and Tibiae
,”
J. Bone. Jt. Surg. Am.
,
80
(
6
), pp.
793
806
.10.2106/00004623-199806000-00003
4.
Fadel
,
M.
, and
Hosny
,
G.
,
2005
, “
The Taylor Spatial Frame for Deformity Correction in the Lower Limbs
,”
Int. Orthop.
,
29
(
2
), pp.
125
129
.10.1007/s00264-004-0611-9
5.
Ilizarov
,
G. A.
,
1989
, “
The Tension-Stress Effect on the Genesis and Growth of Tissues—Part II: The Influence of the Rate and Frequency of Distraction
,”
Clin. Orthop. Relat. Res.
,
239
(
239
), pp.
263
285
.10.1007/978-1-4471-5451-8_137
6.
Skomoroshko
,
P. V.
,
Vilensky
,
V. A.
,
Hammouda
,
A. I.
,
Fletcher
,
M. D.
, and
Solomin
,
L. N.
,
2014
, “
Determination of the Maximal Corrective Ability and Optimal Placement of the Ortho-SUV Frame for Femoral Deformity With Respect to the Soft Tissue Envelope, a Biomechanical Modelling Study
,”
Adv. Orthop.
,
2014
(
12
), p.
268567
.10.1155/2014/268567
7.
Wei
,
M.
,
Chen
,
J.
,
Guo
,
Y.
, and
Sun
,
H.
,
2017
, “
The Computer-Aided Parallel External Fixator for Complex Lower Limb Deformity Correction
,”
Int. J. Comput. Assisted Radiol. Surg.
,
3
, pp.
1
11
.10.1007/s11548-017-1654-x
8.
Avşar
,
E.
, and
Ün
,
K.
,
2016
, “
Automatic 3D Modeling and Simulation of Bone-Fixator System in a Novel Graphical User Interface
,”
Inf. Med. Unlocked
,
2
, pp.
78
91
.10.1016/j.imu.2016.04.002
9.
Avsar
,
E.
,
Ün
,
M. K.
, and
Deniz
,
A. I.
,
2014
, “
A Graphical User Interface for an External Fixation System
,”
IEEE-EMBS International Conference on Biomedical and Health Informatics
, Valencia, Spain, June 1–4, pp.
480
483
.10.1109/BHI.2014.6864407
10.
Du
,
H.
,
Hu
,
L.
,
Li
,
C.
,
He
,
C.
,
Zhang
,
L.
, and
Tang
,
P.
,
2015
, “
Preoperative Trajectory Planning for Closed Reduction of Long-Bone Diaphyseal Fracture Using a Computer-Assisted Reduction System
,”
Int. J. Med. Robot. Comput. Assisted Surg.
,
11
(
1
), pp.
58
66
.10.1002/rcs.1573
11.
Li
,
C.
,
Wang
,
T.
,
Hu
,
L.
,
Zhang
,
L.
,
Du
,
H.
,
Zhao
,
L.
,
Wang
,
L.
, and
Tang
,
P.
,
2015
, “
A Visual Servo-Based Teleoperation Robot System for Closed Diaphyseal Fracture Reduction
,”
Proc. Inst. Mech. Eng., Part H
,
229
(
9
), pp.
629
637
.10.1177/0954411915595827
12.
Kim
,
Y. H.
,
Inoue
,
N.
, and
Chao
,
E. Y.
,
2002
, “
Kinematic Simulation of Fracture Reduc-Tion and Bone Deformity Correction Under Unilateral External Fixation
,”
J. Biomech.
,
35
(
8
), pp.
1047
1058
.10.1016/S0021-9290(02)00067-2
13.
Wu
,
Y.
,
Plakseychuk
,
A.
, and
Shimada
,
K.
,
2014
, “
Computer-Aided Surgical Planner for a New Bone Deformity Correction Device Using Axis-Angle Representation
,”
Med. Eng. Phys.
,
36
(
11
), pp.
1536
1542
.10.1016/j.medengphy.2014.08.006
14.
Davidson
,
R. S.
,
2011
, “
The MAC (Multi-Axial Correcting) Monolateral External Fixation System (Biomet/EBI) Technique: An Easier Way to Correct Deformity
,”
Oper. Tech. Orthop.
,
21
(
2
), pp.
113
124
.10.1053/j.oto.2011.01.008
15.
Bor
,
N.
,
Rubin
,
G.
, and
Rozen
,
N.
,
2011
, “
Ilizarov Method for Gradual Deformity Correction
,”
Oper. Tech. Orthop.
,
21
(
2
), pp.
104
112
.10.1053/j.oto.2011.01.006
16.
Paley
,
D.
,
Herzenberg
,
J. E.
,
Tetsworth
,
K.
,
McKie
,
J.
, and
Bhave
,
A.
,
1994
, “
Deformity Planning for Frontal and Sagittal Plane Corrective Osteotomies
,”
Orthop. Clin. North Am.
,
25
(
3
), pp.
425
465
.https://pubmed.ncbi.nlm.nih.gov/8028886/
17.
Song
,
S. K.
, and
Kwon
,
D. S.
,
2001
, “
Efficient Formulation Approach for the Forward Kinematics of the 3-6 Stewart-Gough Platform
,”
J. Intell. Robot. Syst.
,
3
(
3
), pp.
1688
1693
.10.1109/IROS.2001.977221
18.
Innocenti
,
C.
, and
Parenti-Castelli
,
V.
,
1990
, “
Direct Position Analysis of the Stewart Platform Mechanism
,”
Mech. Mach. Theory
,
25
(
6
), pp.
611
621
.10.1016/0094-114X(90)90004-4
19.
Der-Ming
,
K.
,
1999
, “
Direct Displacement Analysis of a Stewart Platform Mechanism
,”
Mech. Mach. Theory
,
34
(
3
), pp.
453
465
.10.1016/S0094-114X(98)00043-3
20.
Wampler, C. W., 1996, “Forward Displacement Analysis of General Six-in-Parallel SPS (Stewart) Platform Manipulators Using Soma Coordinates,”
Mech. Mach. Theory
, 31(3), pp.
331
337
.10.1016/0094-114X(95)00068-A
21.
Naqui
,
S. Z. H.
,
Naqui
,
W.
,
Foster
,
A.
,
Tselentakis
,
G.
,
Evans
,
M.
, and
Day
,
J. B.
,
2008
, “
Correction of Simple and Complex Pediatric Deformities Using the Taylor-Spatial Frame
,”
J. Pediatr. Orthop.
,
28
(
6
), pp.
640
647
.10.1097/BPO.0b013e3181831e99
22.
Rozbruch
,
S. R.
,
Helfet
,
D. L.
, and
Blyakher
,
A.
,
2002
, “
Distraction of Hypertrophic Nonunion of Tibia With Deformity Using Ilizarov/Taylor Spatial Frame—Report of Two Cases
,”
Arch. Orthop. Trauma Surg.
,
122
(
5
), pp.
295
298
.10.1007/s00402-001-0370-7
23.
Rozbruch
,
S. R.
,
Pugsley
,
J. S.
,
Fragomen
,
A. T.
, and
Ilizarov
,
S.
,
2008
, “
Repair of Tibial Nonunions and Bone Defects With the Taylor Spatial Frame
,”
J. Orthop. Trauma
,
22
(
2
), pp.
88
95
.10.1097/BOT.0b013e318162ab49
24.
Vilensky
,
V. A.
,
Pozdeev
,
A. A.
,
Zubairov
,
T. F.
,
Zakharyan
,
E. A.
, and
Pozdeev
,
A. P.
,
2016
, “
Treatment of Pediatric Patients With Lower Extremity Deformities Using Software-Assisted Ortho-SUV Frame: Analysis of 213 Cases
,”
Pediatr. Traumatol. Orthop. Reconstr. Surg.
,
4
(
4
), pp.
21
32
.10.17816/PTORS4421-32
25.
Nanua
,
P.
,
Waldron
,
K. J.
, and
Murthy
,
V.
,
1990
, “
Direct Kinematic Solution of a Stewart Platform
,”
IEEE Trans. Robot. Autom.
,
6
(
4
), pp.
438
444
.10.1109/70.59354
26.
Solomin
,
L. N.
,
Paley
,
D.
,
Shchepkina
,
E. A.
,
Vilensky
,
V. A.
, and
Skomoroshko
,
P. V.
,
2014
, “
A Comparative Study of the Correction of Femoral Deformity Between the Ilizarov Apparatus and Ortho-SUV Frame
,”
Int. Orthop.
,
38
(
4
), pp.
865
872
.10.1007/s00264-013-2247-0
27.
Feldman
,
D. S.
,
Shin
,
S. S.
,
Madan
,
S.
, and
Koval
,
K. J.
,
2003
, “
Correction of Tibial Malunion and Nonunion With Six-Axis Analysis Deformity Correction Using the Taylor Spatial Frame
,”
J. Orthop. Trauma
,
17
(
8
), pp.
549
554
.10.1097/00005131-200309000-00002
28.
Nakase
,
T.
,
Kitano
,
M.
,
Kawai
,
H.
,
Ueda
,
T.
,
Higuchi
,
C.
,
Hamada
,
M.
, and
Yoshikawa
,
H.
,
2009
, “
Distraction Osteogenesis for Correction of Three-Dimensional Deformities With Shortening of Lower Limbs by Taylor Spatial Frame
,”
Arch. Orthop. Trauma Surg.
,
129
(
9
), pp.
1197
1201
.10.1007/s00402-008-0702-y
29.
Feldman
,
D. S.
,
Madan
,
S. S.
,
Koval
,
K. J.
,
van Bosse
,
H. J.
,
Bazzi
,
J.
, and
Lehman
,
W. B.
,
2003
, “
Correction of Tibia Vara With Six-Axis Deformity Analysis and the Taylor Spatial Frame
,”
J. Pediatr. Orthop.
,
23
(
3
), pp.
387
391
.10.1097/01241398-200305000-00022
30.
Takata
,
M.
,
Vilensky
,
V. A.
,
Tsuchiya
,
H.
,
Tsuchiya
,
H.
, and
Solomin
,
L. N.
,
2013
, “
Foot Deformity Correction With Hexapod External Fixator, the Ortho-SUV Frame
,”
Foot Ankle Surg.
,
52
(
3
), pp.
324
330
.10.1053/j.jfas.2013.01.013
31.
Skomoroshko
,
P. V.
,
Vilensky
,
V. A.
,
Hammouda
,
A. I.
,
Fletcher
,
M. D. A.
, and
Solomin
,
L. N.
,
2015
, “
Mechanical Rigidity of the Ortho-SUV Frame Compared to the Ilizarov Frame in the Correction of Femoral Deformity
,”
Strategies Trauma Limb Reconstr.
,
10
(
1
), pp.
5
11
.10.1007/s11751-015-0214-6
32.
Seide
,
K.
,
Faschingbauer
,
M.
,
Wenzl
,
M. E.
,
Weinrich
,
N.
, and
Juergens
,
C.
,
2004
, “
A Hexapod Robot External Fixator for Computer Assisted Fracture Reduction and Deformity Correction
,”
Int. J. Med. Robot. Comput.
,
1
(
1
), pp.
64
69
.10.1002/rcs.6
33.
Riganti
,
S.
,
Nasto
,
L. A.
,
Mannino
,
S.
,
Marrè
,
B. G.
, and
Boero
,
S.
,
2019
, “
Correction of Complex Lower Limb Angular Deformities With or Without Length Discrepancy in Children Using the TL-Hex Hexapod System: Comparison of Clinical and Radiograph-ICAL Results
,”
J. Pediatr. Orthop. B
,
28
(
3
), pp.
214
220
.10.1097/BPB.0000000000000573
34.
DePuy Synthes
,
2017
, “
Maxframe™ Multi-Axial Correction System
,” Synthes USA Products, LLC, Warsaw, IN, accessed Apr. 29, 2019, http://synthes. vo.llnwd.net/o16/LLNWMB8/US%20Mobile/Synthes%20North%20America/Product%20Support%20Materials/Technique%20Guides/DSUSTRM02160822_ 1888_MAXFRAME_TG_150.pdf
35.
Solomin
,
L. N.
,
Utekhin
,
A. I.
, and
Vilensky
,
V. A.
,
2012
, “
Deformity Correction and Fracture Treatment Using the Software-Based Ortho-SUV Frame
,”
The Basic Principles of External Skeletal Fixation Using the Ilizarov and Other Devices
,
L.
Solomin
, eds.,
Springer
,
Milano, Italy
.10.1007/978-88-470-2619-3_17
36.
Sluga
,
M.
,
Pfeiffer
,
M.
,
Kotz
,
R.
, and
Nehrer
,
S.
,
2003
, “
Lower Limb Deformities in Children: Two-Stage Correction Using the Taylor Spatial Frame
,”
J. Pediatr. Orthop. B.
,
12
(
2
), pp.
123
128
.10.1097/01.bpb.0000049578.53117.03
37.
Rozbruch
,
S. R.
,
Fragomen
,
A. T.
, and
Ilizarov
,
S.
,
2006
, “
Correction of Tibial Deformity With Use of the Ilizarov-Taylor Spatial Frame
,”
J. Bone Jt. Surg. Am.
,
88
(
Suppl. 4
), pp.
156
174
.10.2106/JBJS.F.00745
38.
Nho
,
S. J.
,
Helfet
,
D. L.
, and
Robert
,
R. S.
,
2006
, “
Temporary Intentional Leg Shortening and Deformation to Facilitate Wound Closure Using the Ilizarov/Taylor Spatial Frame
,”
J. Orthop. Trauma
,
20
(
6
), pp.
419
424
.10.1097/00005131-200607000-00010
39.
Rodriguez
,
C. E.
,
Cummins
,
M.
,
Bever
,
B.
, and
Samchukov
,
M.
,
2019
, “
Practical Management of the Orthofix Truelok External Circular Fixator in Deformity Correction and Lower Limb Salvage
,”
Int. J. Orthoplastic Surg.
,
2
(
2
), pp.
55
61
.10.29337/ijops.38
40.
Ferreira
,
N.
, and
Birkholtz
,
F.
,
2015
, “
Radiographic Analysis of Hexapod External Fixators: Fundamental Differences Between the Taylor Spatial Frame and TrueLok-Hex
,”
J. Med. Eng. Technol.
,
39
(
3
), pp.
173
176
.10.3109/03091902.2015.1025993
41.
Pesenti
,
S.
,
Iobst
,
C. A.
, and
Launay
,
F.
,
2017
, “
Evaluation of the External Fixator TrueLok Hexapod System for Tibial Deformity Correction in Children
,”
Orthop. Traumatol. Surg. Res.
,
103
(
5
), pp.
761
764
.10.1016/j.otsr.2017.03.015
42.
Zhang
,
X.
,
Sun
,
H.
,
Chen
,
J.
,
Guo
,
Y.
,
Zhang
,
Y.
,
Sun
,
Z.
,
Wang
,
T.
,
Wei
,
M.
,
Zhang
,
Y.
, and
Chen
,
L.
,
2019
, “
Optimization of Electronic Prescription for Parallel External Fixator Based on Genetic Algorithm
,”
Int. J. Comput. Assist. Radiol. Surg.
,
14
(
5
), pp.
861
871
.10.1007/s11548-019-01931-3
43.
Aydin
,
A.
,
Avsar
,
E.
,
Akcali
,
I. D.
,
Un
,
M. K.
,
Ibrikci
,
T.
,
Mutlu
,
H.
,
Bicer
,
O. S.
,
Ozkan
,
C.
, and
Durmaz
,
A.
,
2014
, “
Displacement Analysis of Robotic Frames for Reliable and Versatile Use as External Fixator
,” Fourth
IEEE Annual International Conference on Cyber Technology in Automation Control and Intelligent Systems
, Hong Kong, China, June 4–7, pp.
180
185
.10.1109/CYBER.2014.6917457
44.
Li
,
J.
,
Zhao
,
X.
,
Hu
,
X.
,
Tao
,
C.
, and
Ji
,
R.
,
2018
, “
Numerical Investigation of the Relationship Between Pin Deviations and Joint Coordinates of a Unilateral External Fixator
,”
Clin. Biomech.
,
53
, pp.
107
116
.10.1016/j.clinbiomech.2018.01.024
45.
Irwansyah
,
Sinh
,
N. P.
,
Lai
,
J. Y.
,
Essomba
,
T.
,
Asbar
,
R.
, and
Lee
,
P. Y.
,
2018
, “
Integration of Computer-Assisted Fracture Reduction System and a Hybrid 3-DOF-RPS Mechanism for Assisting the Orthopedic Surgery
,”
Tenth International Conference Numerical Analysis in Engineering
(
NAE
), Bamda Aceh, Indonesia, Aug. 24–25, pp.
308
318
.
You do not currently have access to this content.