Abstract

A dataset of knee kinematics in healthy, uninjured adults is needed to serve as a reference for comparison when evaluating the effects of injury, surgery, rehabilitation, and age. Most currently available datasets that characterize healthy knee kinematics were developed using conventional motion analysis, known to suffer from skin motion artifact. More accurate kinematics, obtained from bone pins or biplane radiography, have been reported for datasets ranging in size from 5 to 15 knees. The aim of this study was to characterize tibiofemoral kinematics and its variability in a larger sample of healthy adults. Thirty-nine knees were imaged using biplane radiography at 100 images/s during multiple trials of treadmill walking. Multiple gait trials were captured to measure stance and swing-phase knee kinematics. Six degrees-of-freedom kinematics were determined using a validated volumetric model-based tracking process. A bootstrapping technique was used to define average and 90% prediction bands for the kinematics. The average ROM during gait was 7.0 mm, 3.2 mm, and 2.9 mm in anterior/posterior (AP), medial/lateral (ML), and proximal/distal (PD) directions, and 67.3 deg, 11.5 deg, and 3.7 deg in flexion/extension (FE), internal/external (IE), and abduction/adduction (AbAd). Continuous kinematics demonstrated large interknee variability, with 90% prediction bands spanning approximately ±4 mm, ±10 mm, and ±5 mm for ML, AP, and PD translations and ±15 deg, ±10 deg, and ±6 deg in FE, IE, and AbAd. This dataset suggests substantial variability exists in healthy knee kinematics. This study provides a normative database for evaluating knee kinematics in patients who receive conservative or surgical treatment.

References

References
1.
Andriacchi
,
T. P.
, and
Dyrby
,
C. O.
,
2005
, “
Interactions Between Kinematics and Loading During Walking for the Normal and ACL Deficient Knee
,”
J. Biomech.
,
38
(
2
), pp.
293
298
.10.1016/j.jbiomech.2004.02.010
2.
Shabani
,
B.
,
Bytyqi
,
D.
,
Lustig
,
S.
,
Cheze
,
L.
,
Bytyqi
,
C.
, and
Neyret
,
P.
,
2015
, “
Gait Knee Kinematics After ACL Reconstruction: 3D Assessment
,”
Int. Orthop.
,
39
(
6
), pp.
1187
1193
.10.1007/s00264-014-2643-0
3.
Shabani
,
B.
,
Bytyqi
,
D.
,
Lustig
,
S.
,
Cheze
,
L.
,
Bytyqi
,
C.
, and
Neyret
,
P.
,
2015
, “
Gait Changes of the ACL-Deficient Knee 3D Kinematic Assessment
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
23
(
11
), pp.
3259
3265
.10.1007/s00167-014-3169-0
4.
Taylor
,
K. A.
,
Cutcliffe
,
H. C.
,
Queen
,
R. M.
,
Utturkar
,
G. M.
,
Spritzer
,
C. E.
,
Garrett
,
W. E.
, and
DeFrate
,
L. E.
,
2013
, “
In Vivo Measurement of ACL Length and Relative Strain During Walking
,”
ASME J. Biomech. Eng.
,
46
(
3
), pp.
478
483
.10.1016/j.jbiomech.2012.10.031
5.
Kadaba
,
M. P.
,
Ramakrishnan
,
H. K.
, and
Wootten
,
M. E.
,
1990
, “
Measurement of Lower Extremity Kinematics During Level Walking
,”
J. Orthop. Res.
,
8
(
3
), pp.
383
392
.10.1002/jor.1100080310
6.
Seel
,
T.
,
Raisch
,
J.
, and
Schauer
,
T.
,
2014
, “
IMU-Based Joint Angle Measurement for Gait Analysis
,”
Sensors
,
14
(
4
), pp.
6891
6909
.10.3390/s140406891
7.
Al-Amri
,
M.
,
Nicholas
,
K.
,
Button
,
K.
,
Sparkes
,
V.
,
Sheeran
,
L.
, and
Davies
,
J.
,
2018
, “
Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity
,”
Sensors
,
18
(
3
), p.
719
.10.3390/s18030719
8.
Benoit
,
D. L.
,
Ramsey
,
D. K.
,
Lamontagne
,
M.
,
Xu
,
L.
,
Wretenberg
,
P.
, and
Renström
,
P.
,
2006
, “
Effect of Skin Movement Artifact on Knee Kinematics During Gait and Cutting Motions Measured In Vivo
,”
Gait Posture
,
24
(
2
), pp.
152
164
.10.1016/j.gaitpost.2005.04.012
9.
Benoit
,
D. L.
,
Damsgaard
,
M.
, and
Andersen
,
M. S.
,
2015
, “
Surface Marker Cluster Translation, Rotation, Scaling and Deformation: Their Contribution to Soft Tissue Artefact and Impact on Knee Joint Kinematics
,”
J. Biomech.
,
48
(
10
), pp.
2124
2129
.10.1016/j.jbiomech.2015.02.050
10.
Li
,
K.
,
Zheng
,
L.
,
Tashman
,
S.
, and
Zhang
,
X.
,
2012
, “
The Inaccuracy of Surface-Measured Model-Derived Tibiofemoral Kinematics
,”
J. Biomech.
,
45
(
15
), pp.
2719
2723
.10.1016/j.jbiomech.2012.08.007
11.
Benoit
,
D. L.
,
Ramsey
,
D. K.
,
Lamontagne
,
M.
,
Xu
,
L.
,
Wretenberg
,
P.
, and
Renström
,
P.
,
2007
, “
In Vivo Knee Kinematics During Gait Reveals New Rotation Profiles and Smaller Translations
,”
Clin. Orthop. Relat. Res.
,
454
, pp.
81
88
.10.1097/BLO.0b013e31802dc4d0
12.
Cereatti
,
A.
,
Bonci
,
T.
,
Akbarshahi
,
M.
,
Aminian
,
K.
,
Barré
,
A.
,
Begon
,
M.
,
Benoit
,
D. L.
,
Charbonnier
,
C.
,
Dal Maso
,
F.
,
Fantozzi
,
S.
,
Lin
,
C. C.
,
Lu
,
T. W.
,
Pandy
,
M. G.
,
Stagni
,
R.
,
van den Bogert
,
A. J.
, and
Camomilla
,
V.
,
2017
, “
Standardization Proposal of Soft Tissue Artefact Description for Data Sharing in Human Motion Measurements
,”
J. Biomech.
,
62
, pp.
5
13
.10.1016/j.jbiomech.2017.02.004
13.
Potvin
,
B. M.
,
Shourijeh
,
M. S.
,
Smale
,
K. B.
, and
Benoit
,
D. L.
,
2017
, “
A Practical Solution to Reduce Soft Tissue Artifact Error at the Knee Using Adaptive Kinematic Constraints
,”
J. Biomech.
,
62
, pp.
124
131
.10.1016/j.jbiomech.2017.02.006
14.
Lafortune
,
M. A.
,
Cavanagh
,
P. R.
,
Sommer
,
H. J.
, and
Kalenak
,
A.
,
1992
, “
Three-Dimensional Kinematics of the Human Knee During Walking
,”
J. Biomech.
,
25
(
4
), pp.
347
357
.10.1016/0021-9290(92)90254-X
15.
Anderst
,
W.
,
Zauel
,
R.
,
Bishop
,
J.
,
Demps
,
E.
, and
Tashman
,
S.
,
2009
, “
Validation of Three-Dimensional Model-Based Tibio-Femoral Tracking During Running
,”
Med. Eng. Phys.
,
31
(
1
), pp.
10
16
.10.1016/j.medengphy.2008.03.003
16.
Guan
,
S.
,
Gray
,
H. A.
,
Keynejad
,
F.
, and
Pandy
,
M. G.
,
2016
, “
Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait
,”
IEEE Trans. Med. Imaging
,
35
(
1
), pp.
326
336
.10.1109/TMI.2015.2473168
17.
Hoshino
,
Y.
,
Wang
,
J. H.
,
Lorenz
,
S.
,
Fu
,
F. H.
, and
Tashman
,
S.
,
2012
, “
The Effect of Distal Femur Bony Morphology on In Vivo Knee Translational and Rotational Kinematics
,”
Knee Surg., Sport. Traumatol. Arthrosc.
,
20
(
7
), pp.
1331
1338
.10.1007/s00167-011-1661-3
18.
Li
,
G.
,
Van de Velde
,
S. K.
, and
Bingham
,
J. T.
,
2008
, “
Validation of a Non-Invasive Fluoroscopic Imaging Technique for the Measurement of Dynamic Knee Joint Motion
,”
J. Biomech
,,
41
(
7
), pp.
1616
1622
.10.1016/j.jbiomech.2008.01.034
19.
Tashman
,
S.
,
Kolowich
,
P.
,
Collon
,
D.
,
Anderson
,
K.
, and
Anderst
,
W.
,
2006
, “
Dynamic Function of the ACL-Reconstructed Knee During Running
,”
Clin. Orthop. Relat. Res.
,
454
(
454
), pp.
66
73
.10.1097/BLO.0b013e31802bab3e
20.
Gray
,
H. A.
,
Guan
,
S.
,
Thomeer
,
L. T.
,
Schache
,
A. G.
,
de Steiger
,
R.
, and
Pandy
,
M. G.
,
2019
, “
Three-Dimensional Motion of the Knee-Joint Complex During Normal Walking Revealed by Mobile Biplane X-Ray Imaging
,”
J. Orthop. Res.
,
37
(
3
), pp.
615
630
.10.1002/jor.24226
21.
Treece
,
G. M.
,
Prager
,
R. W.
, and
Gee
,
A. H.
,
1999
, “
Regularized Marching Tetrahedra: Improved Iso-Surface Extraction
,”
Comput. Graph.
,
23
(
4
), pp.
583
598
.10.1016/S0097-8493(99)00076-X
22.
Bey
,
M. J.
,
Zauel
,
R.
,
Brock
,
S. K.
, and
Tashman
,
S.
,
2006
, “
Validation of a New Model-Based Tracking Technique for Measuring Three-Dimensional, In Vivo Glenohumeral Joint Kinematics
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
604
609
.10.1115/1.2206199
23.
Renault
,
J.-B.
,
Aüllo-Rasser
,
G.
,
Donnez
,
M.
,
Parratte
,
S.
, and
Chabrand
,
P.
,
2018
, “
Articular-Surface-Based Automatic Anatomical Coordinate Systems for the Knee Bones
,”
J. Biomech.
,
80
, pp.
171
178
.10.1016/j.jbiomech.2018.08.028
24.
Tashman
,
S.
, and
Anderst
,
W.
,
2003
, “
In-Vivo Measurement of Dynamic Joint Motion Using High Speed Biplane Radiography and CT: Application to Canine ACL Deficiency
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
238
245
.10.1115/1.1559896
25.
Myronenko
,
A.
, and
Song
,
X.
,
2010
, “
Point Set Registration: Coherent Point Drift
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
32
(
12
), pp.
2262
2275
.10.1109/TPAMI.2010.46
26.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
27.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
New York
.
28.
Lenhoff
,
M. W.
,
Santner
,
T. J.
,
Otis
,
J. C.
,
Peterson
,
M. G. E.
,
Williams
,
B. J.
, and
Backus
,
S. I.
,
1999
, “
Bootstrap Prediction and Con Dence Bands: A Superior Statistical Method for Analysis of Gait Data
,”
Gait Posture
,
9
(
1
), pp.
10
17
.10.1016/S0966-6362(98)00043-5
29.
Guan
,
S.
,
Gray
,
H. A.
,
Schache
,
A. G.
,
Feller
,
J.
,
de Steiger
,
R.
, and
Pandy
,
M. G.
,
2017
, “
In Vivo Six-Degree-of-Freedom Knee-Joint Kinematics in Overground and Treadmill Walking Following Total Knee Arthroplasty
,”
J. Orthop. Res.
,
35
(
8
), pp.
1634
1643
.10.1002/jor.23466
30.
Kozanek
,
M.
,
Hosseini
,
A.
,
Liu
,
F.
,
Van de Velde
,
S. K.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2009
, “
Tibiofemoral Kinematics and Condylar Motion During the Stance Phase of Gait
,”
J. Biomech.
,
42
(
12
), pp.
1877
1884
.10.1016/j.jbiomech.2009.05.003
You do not currently have access to this content.