The primary computational bottle-neck in implicit structural dynamics is the repeated inversion of the underlying stiffness matrix. In this paper, a fast inversion technique is proposed by merging four distinct but complementary concepts: (1) voxelization with adaptive local refinement, (2) assembly-free (a.k.a. matrix-free or element-by-element) finite element analysis (FEA), (3) assembly-free deflated conjugate gradient (AF-DCG), and (4) multicore parallelization. In particular, we apply these concepts to the well-known Newmark-beta method, and the resulting AF-DCG is well-suited for large-scale problems. It can be easily ported to many-core central processing unit (CPU) and multicore graphics-programmable unit (GPU) architectures, as demonstrated through numerical experiments.

References

1.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R.
,
2002
,
Concepts and Applications of Finite Element Analysis
, 4th ed.,
John Wiley & Sons
, New York.
2.
Cook
,
R. D.
,
2007
,
Concepts and Applications of Finite Element
,
John Wiley & Sons
,
New York
.
3.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech. Div.
,
85
(
EM3
), pp.
67
94
.
4.
ANSYS,
2012
, “
ANSYS 13
,” www.ansys.com
5.
Arbenz
,
P.
,
van Lenthe
,
G. H.
,
Mennel
,
U.
,
Müllerand
,
R.
, and
Sala
,
M.
,
2008
, “
A Scalable Multi-Level Preconditioner for Matrix-Free μ-Finite Element Analysis of Human Bone Structures
,”
Int. J. Numer. Methods Eng.
,
73
(
7
), pp.
927
947
.10.1002/nme.2101
6.
Saad
,
Y.
,
2003
,
Iterative Methods for Sparse Linear Systems
,
SIAM
, Philadelphia, PA.10.1137/1.9780898718003
7.
Adams
,
M.
,
2002
, “
Evaluation of Three Unstructured Multigrid Methods on 3D Finite Element Problems in Solid Mechanics
,”
Int. J. Numer. Methods Eng.
,
55
(
2
), pp.
519
534
.10.1002/nme.506
8.
Bell
,
N.
,
2008
, “
Efficient Sparse Matrix-Vector Multiplication on CUDA
,” Nvidia Corporation, Nvidia Technical Report No. NVR-2008-004.
9.
Hughes
,
T. J. R.
,
Levit
,
I.
, and
Winget
,
J.
,
1983
, “
An Element-by-Element Solution Algorithm for Problems of Structural and Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
36
(
2
), pp.
241
254
.10.1016/0045-7825(83)90115-9
10.
Augarde
,
C. E.
,
Ramage
,
A.
, and
Staudacher
,
J.
,
2006
, “
An Element-Based Displacement Preconditioner for Linear Elasticity Problems
,”
Comput. Struct.
,
84
(
31–32
), pp.
2306
2315
.10.1016/j.compstruc.2006.08.057
11.
Bellavia
,
S.
,
Gondzio
,
J.
, and
Morini
,
B.
,
2013
, “
A Matrix-Free Preconditioner for Sparse Symmetric Positive Definite Systems and Least-Squares Problems
,”
SIAM J. Sci. Comput.
,
35
(
1
), pp.
A192
A211
.10.1137/110840819
12.
Suresh
,
K.
, and
Yadav
,
P.
,
2012
, “
Large-Scale Modal Analysis on Multi-Core Architectures
,”
ASME
Paper No. DETC2012-70281. 10.1115/DETC2012-70281
13.
Mueller
,
E.
,
Guo
,
X.
,
Scheichl
,
R.
, and
Shi
,
S.
,
2013
, “
Matrix-Free GPU Implementation of a Preconditioned Conjugate Gradient Solver for Anisotropic Elliptic PDEs
,” e-print arXiv:1302.7193[cs, math].
14.
Akbariyeh
,
A.
,
Carrigan
,
T. J.
,
Dennis
,
B. H.
,
Chan
,
W. S.
,
Wang
,
B. P.
, and
Lawrence
,
K. L.
,
2012
, “
Application of GPU-Based Computing to Large Scale Finite Element Analysis of Three-Dimensional Structures
,”
Proceedings of the Eighth International Conference on Engineering Computational Technology
, Stirlingshire, UK, Paper No. 6.
15.
Saad
,
Y.
,
Yeung
,
M.
,
Erhel
,
J.
, and
Guyomarc'h
,
F.
,
2000
, “
A Deflated Version of the Conjugate Gradient Algorithm
,”
SIAM J. Sci. Comput.
,
21
(
5
), pp.
1909
1926
.10.1137/S1064829598339761
16.
Duster
,
A.
,
Parvizian
,
J.
,
Yang
,
Z.
, and
Rank
,
E.
,
2008
, “
The Finite Cell Method for 3D problems of Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
197
(45–48), pp.
3768
3782
.10.1016/j.cma.2008.02.036
17.
Karabassi
,
E. A.
,
Papaioannou
,
G.
, and
Theoharis
,
T.
,
1999
, “
A Fast Depth-Buffer-Based Voxelization Algorithm
,”
J. Graphics Tools
,
4
(
4
), pp.
5
10
.10.1080/10867651.1999.10487510
18.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2005
,
The Finite Element Method for Solid and Structural Mechanics
,
Elsevier
, Oxford, UK.
19.
Wilson
,
E. L.
,
Taylor
,
R. L.
,
Doherty
,
W. P.
, and
Ghaboussi
,
J.
,
1973
, “
Incompatible Displacement Models
,”
Numerical and Computer Methods in Structural Mechanics
, Vol.
A
, Academic Press, New York, pp.
43
57
.
20.
Taiebat
,
H. H.
, and
Carter
,
J. P.
,
2001
, “
Three-Dimensional Non-Conforming Elements
,” Centre for Geotechnical Research, The University of Sydney, Sydney, Australia, Report No. R808.
21.
Goddeke
,
D.
,
Strzodka
,
R.
, and
Turek
,
S.
,
2007
, “
Performance and Accuracy of Hardware-Oriented Native-Emulated- and Mixed-Precision Solvers in FEM Simulations
,”
Int. J. Parallel Emergent Distrib. Syst.
,
22
(
4
), pp.
221
256
.10.1080/17445760601122076
22.
Melanz
,
D.
,
Khude
,
N.
,
Jayakumar
,
P.
, and
Negrut
,
D.
,
2014
, “
A Matrix-Free Newton–Krylov Parallel Implicit Implementation of the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p.
011006
.10.1115/1.4025281
23.
Aubry
,
R.
,
Mut
,
F.
,
Dey
,
S.
, and
Lohner
,
R.
,
2011
, “
Deflated Preconditioned Conjugate Gradient Solvers for Linear Elasticity
,”
Int. J. Numer. Methods Eng.
,
88
(
11
), pp.
1112
1127
.10.1002/nme.3209
24.
Briggs
,
W. L.
,
Henson
,
V. E.
, and
McCormick
,
S. F.
,
2000
,
A Multigrid Tutorial
,
SIAM
, Philadelphia, PA.
25.
NVIDIA Corporation
,
2008
,
NVIDIA CUDA: Compute Unified Device Architecture, Programming Guide
,
NVIDIA Corporation
,
Santa Clara, CA
.
26.
SolidWorks
,
2005
, “
SolidWorks
,” www.solidworks.com
You do not currently have access to this content.