This paper addresses the model, solution, and analysis of fluid flow behavior in fractal reservoirs considering wellbore storage and skin effects (WS–SE). In the light of the fractional calculus (FC), the general form of fluid flow model considering the history of flow in all stages of production is presented. On the basis of Bessel functions theory, analytical solutions in the Laplace transform domain under three outer-boundary conditions, assuming the well is producing at a constant rate, are obtained. Based on the analytical solutions, various examples, discussing the pressure-transient behavior of a well in a fractal reservoir, are presented.

References

1.
Beier
,
R. A.
,
1994
, “
Pressure-Transient Model for a Vertically Fractured Well in a Fractal Reservoir
,”
SPE Form. Eval.
,
9
(
2
), pp.
122
128
.10.2118/20582-PA
2.
Camacho-Velázquez
,
R.
,
Fuentes-Cruz
,
G.
, and
Vasquez-Cruz
,
M.
,
2008
, “
Decline-Curve Analysis of Fractured Reservoirs With Fractal Geometry
,”
SPE Reservoir Eval. Eng.
,
11
(
3
), pp.
606
619
.10.2118/104009-PA
3.
Park
,
H. W.
,
Choe
,
J.
, and
Kang
,
J. M.
,
2000
, “
Pressure Behavior of Transport in Fractal Porous Media Using a Fractional Calculus Approach
,”
Energy Sources
,
22
(
10
), pp.
881
890
.
4.
Flamenco-Lopez
,
F.
, and
Camacho-Velazquez
,
R.
,
2003
, “
Determination of Fractal Parameters of Fracture Networks Using Pressure-Transient Data
,”
SPE Reservoir Eval. Eng.
,
6
(
1
), pp.
39
47
.10.2118/82607-PA
5.
Cossio
,
M.
,
Moridis
,
G. J.
, and
Blasingame
,
T. A.
,
2013
, “
A Semianalytic Solution for Flow in Finite-Conductivity Vertical Fractures by Use of Fractal Theory
,”
SPE J.
,
18
(
1
), pp.
83
96
.10.2118/153715-PA
6.
Mishra
,
S.
,
Brigham
,
W. E.
, and
Orr
,
F. M.
, Jr.
,
1991
, “
Tracer and Pressure-Test Analysis for Characterization of Areally Heterogeneous Reservoirs
,”
SPE Form. Eval.
,
6
(
1
), pp.
45
54
.10.2118/17365-PA
7.
Hewett
,
T. A.
,
1986
, “
Fractal Distributions of Reservoir Heterogeneity and Their Influence on Fluid Transport
,”
SPE
Annual Technical Conference and Exhibition
,
New Orlean, LA
, Oct. 5–8, Paper No. SPE-15386-MS.10.2118/15386-MS
8.
Barker
,
J. A.
,
1988
, “
A Generalized Radial Flow Model for Hydraulic Tests in Fractured Rock
,”
Water Resour. Res.
,
24
(
10
), pp.
1796
1804
.10.1029/WR024i010p01796
9.
Kim
,
T. H.
, and
Schechter
,
D. S.
,
2009
, “
Estimation of Fracture Porosity of Naturally Fractured Reservoirs With No Matrix Porosity Using Fractal Discrete Fracture Networks
,”
SPE Reservoir Eval. Eng.
,
12
(
2
), pp.
232
242
.10.2118/110720-PA
10.
Raghavan
,
R.
, and
Chen
,
C.
,
2013
, “
Fractured-Well Performance Under Anomalous Diffusion
,”
SPE Reservoir Eval. Eng.
,
16
(
3
), pp.
237
245
.10.2118/165584-PA
11.
Chang
,
J.
, and
Yortsos
,
Y. C.
,
1990
, “
Pressure Transient Analysis of Fractal Reservoirs
,”
SPE Form. Eval.
,
5
(
1
), pp.
31
38
.10.2118/18170-PA
12.
Park
,
H. W.
,
Jang
,
I. S.
, and
Kang
,
J. M.
,
1998
, “
An Analytic Approach for Pressure Transients of Fractally Fractured Reservoirs With Variable Apertures
,”
In Situ
,
22
(
3
), pp.
321
337
.
13.
Metzler
,
R.
,
Glöckle
,
W. G.
, and
Nonnenmacher
,
T. F.
,
1994
, “
Fractional Model Equation for Anomalous Diffusion
,”
Phys. A
,
211
(
1
), pp.
13
24
.10.1016/0378-4371(94)90064-7
14.
Mainardi
,
F.
, and
Pagnini
,
G.
,
2003
, “
The Wright Functions as Solutions of the Time-Fractional Diffusion Equation
,”
Appl. Math. Comput.
,
141
(
1
), pp.
51
62
.10.1016/S0096-3003(02)00320-X
15.
Bhalekar
,
S.
, and
Daftardar-Gejji
,
V.
,
2013
, “
Corrigendum to ‘Solving Multi-Term Linear and Non-Linear Diffusion-Wave Equations of Fractional Order by Adomian Decomposition Method’ [Applied Mathematics and Computation 202 (2008) 113–120]
,”
Appl. Math. Comput.
,
219
(
16
), pp.
8413
8415
.10.1016/j.amc.2013.02.072
16.
Kumar
,
S.
,
Kumar
,
D.
,
Abbasbandy
,
S.
, and
Rashidi
,
M. M.
,
2014
, “
Analytical Solution of Fractional Navier–Stokes Equation by Using Modified Laplace Decomposition Method
,”
Ain Shams Eng. J.
,
5
(
2
), pp.
569
574
.10.1016/j.asej.2013.11.004
17.
Ye
,
H.
,
Liu
,
F.
,
Anh
,
V.
, and
Turner
,
I.
,
2014
, “
Maximum Principle and Numerical Method for the Multi-Term Time–Space Riesz–Caputo Fractional Differential Equations
,”
Appl. Math. Comput.
,
227
, pp.
531
540
.10.1016/j.amc.2013.11.015
18.
Razminia
,
K.
,
Razminia
,
A.
, and
Machado
,
J. A. T.
,
2014
, “
Analysis of Diffusion Process in Fractured Reservoirs Using Fractional Derivative Approach
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
9
), pp.
3161
3170
.10.1016/j.cnsns.2014.01.025
19.
Razminia
,
K.
,
Razminia
,
A.
, and
Trujillo
,
J. J.
,
2015
, “
Analysis of Radial Composite Systems Based on Fractal Theory and Fractional Calculus
,”
Signal Process.
,
107
, pp.
378
388
.10.1016/j.sigpro.2014.05.008
20.
Razminia
,
K.
,
Razminia
,
A.
, and
Torres
,
D. F. M.
,
2015
, “
Pressure Responses of a Vertically Hydraulic Fractured Well in a Reservoir With Fractal Structure
,”
Appl. Math. Comput.
,
257
, pp.
374
380
.10.1016/j.amc.2014.12.124
21.
Cafagna
,
D.
,
2007
, “
Fractional Calculus: A Mathematical Tool From the Past for Present Engineers [Past and Present]
,”
IEEE Ind. Electron. Mag.
,
1
(
2
), pp.
35
40
.10.1109/MIE.2007.901479
22.
Zhao
,
Y.
, and
Zhang
,
L.
,
2011
, “
Solution and Type Curve Analysis of Fluid Flow Model for Fractal Reservoir
,”
World J. Mech.
,
1
(
5
), pp.
209
216
.10.4236/wjm.2011.15027
23.
Kong
,
X. Y.
,
1999
,
Advanced Mechanics of Fluids in Porous Media
,
University of Science and Technology of China Press
,
Hefei, China
(in Chinese).
24.
Li
,
S. C.
,
2002
, “
A Solution of Fractal Dual Porosity Reservoir Model in Well Testing Analysis
,”
Prog. Explor. Geophys.
,
25
(
5
), pp.
60
62
(in Chinese).
25.
Razminia
,
K.
,
Razminia
,
A.
, and
Baleanu
,
D.
,
2015
, “
Investigation of Fractional Diffusion Equation Based on Generalized Integral Quadrature Technique
,”
Appl. Math. Modell.
,
39
(
1
), pp.
86
98
.10.1016/j.apm.2014.04.056
26.
O'Shaughnessy
,
B.
, and
Procaccia
,
I.
,
1985
, “
Diffusion on Fractals
,”
Phys. Rev. A.
,
32
(
5
), pp.
3073
3083
.10.1103/PhysRevA.32.3073
27.
Raghavan
,
R.
,
2011
, “
Fractional Derivatives: Application to Transient Flow
,”
J. Pet. Sci. Eng.
,
80
(
1
), pp.
7
13
.10.1016/j.petrol.2011.10.003
28.
van Everdingen
,
A. F.
, and
Hurst
,
W.
,
1949
, “
The Application of the Laplace Transformation to Flow Problems in Reservoirs
,”
J. Pet. Technol.
,
1
(
12
), pp.
305
324
.10.2118/949305-G
29.
Agarwal
,
R. G.
,
Al-Hussainy
,
R.
, and
Ramey
,
H. J.
, Jr.
,
1970
, “
An Investigation of Wellbore Storage and Skin Effect in Unsteady Liquid Flow: I. Analytical Treatment
,”
SPE J.
,
10
(
3
), pp.
279
290
.10.2118/2466-PA
30.
Stehfest
,
H.
,
1970
, “
Algorithm 368: Numerical Inversion of Laplace Transforms [D5]
,”
Commun. ACM
,
13
(
1
), pp.
47
49
.10.1145/361953.361969
31.
Bourdet
,
D. P.
,
Whittle
,
T. M.
,
Douglas
,
A. A.
, and
Pirard
,
Y. M.
,
1983
,
A New Set of Type Curves Simplifies Well Test Analysis
,
World Oil, Gulf Publishing Company
,
Houston, TX
, pp.
95
106
.
You do not currently have access to this content.