A number of strategies can be followed for the real-time simulation of multibody systems. The main contributing factor to computational efficiency is usually the algorithm itself (the number of equations and their structure, the number of coordinates, the time integration scheme, etc.). Additional (but equally important) aspects have to do with implementation (linear solvers, sparse matrices, parallel computing, etc.). In this paper, an iterative refinement technique is introduced into a semirecursive multibody formulation. First, the formulation is summarized and its basic features are highlighted. Then, the basic goal is to iteratively solve the fundamental system of equations to obtain the accelerations. The iterative process is applied to compute corrections of the solution in an economic way, terminating as soon as a given precision is reached. We show that, upon implementation of this method, the computation time can be reduced at a very low implementation and accuracy costs. Two vehicles are simulated to prove the numerical benefits, namely a 16-degrees-of-freedom (DOF) sedan vehicle and a 40-degrees-of-freedom semitrailer truck. In short, a simple method to iteratively solve for the accelerations of vehicle systems in an efficient way is presented.

References

1.
Bowdler
,
H. J.
,
Martin
,
R. S.
,
Peters
,
G.
, and
Wilkinson
,
J. H.
,
1966
, “
Solution of Real and Complex Systems of Linear Equations
,”
Numerische Math.
,
8
(
3
), pp.
217
234
.
2.
Wilkinson
,
J. H.
,
1994
,
Rounding Errors in Algebraic Processes
,
Dover Publications
,
Mineola, NY
.
3.
Moler
,
C. B.
,
1967
, “
Iterative Refinement in Floating Point
,”
J. ACM
,
14
(
2
), pp.
316
321
.
4.
Forsythe
,
G. E.
, and
Moler
,
C. B.
,
1967
,
Computer Solution of Linear Algebraic Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
5.
Stewart
,
G. W.
,
1973
,
Introduction to Matrix Computations
,
Academic Press
,
New York
.
6.
Jankowski
,
M.
, and
Woźniakowski
,
H.
,
1977
, “
Iterative Refinement Implies Numerical Stability
,”
BIT Numer. Math.
,
17
(
3
), pp.
303
311
.
7.
Skeel
,
R. D.
,
1980
, “
Iterative Refinement Implies Numerical Stability for Gaussian Elimination
,”
Math. Comp.
,
35
(
151
), pp.
817
832
.
8.
Higham
,
N.
,
2002
,
Accuracy and Stability of Numerical Algorithms
,
SIAM
,
Philadelphia, PA
.
9.
Demmel
,
J.
,
Hida
,
Y.
,
Kahan
,
W.
,
Li
,
X. S.
,
Mukherjee
,
S.
, and
Riedy
,
E. J.
,
2006
, “
Error Bounds From Extra-Precise Iterative Refinement
,”
ACM Trans. Math. Software
,
32
(
2
), pp.
325
351
.
10.
Arioli
,
M.
,
Demmel
,
J. W.
, and
Duff
,
I. S.
,
1989
, “
Solving Sparse Linear Systems With Sparse Backward Error
,”
SIAM J. Matrix Anal. Appl.
,
10
(
2
), pp.
165
190
.
11.
Higham
,
N. J.
,
1997
, “
Iterative Refinement for Linear Systems and LAPACK
,”
IMA J. Numer. Anal.
,
17
(
4
), pp.
495
509
.
12.
Demmel
,
J.
,
Hida
,
Y.
,
Riedy
,
E. J.
, and
Li
,
X. S.
,
2009
, “
Extra-Precise Iterative Refinement for Overdetermined Least Squares Problems
,”
ACM Trans. Math. Software
,
35
(
4
), p. 28.
13.
Faure
,
F.
,
1999
, “
Fast Iterative Refinement of Articulated Solid Dynamics
,”
IEEE Trans. Visualization Comput. Graphics
,
5
(
3
), pp.
268
276
.
14.
Anitescu
,
M.
, and
Hart
,
G. D.
,
2004
, “
A Fixed-Point Iteration Approach for Multibody Dynamics With Contact and Small Friction
,”
Math. Program.
,
101
(
1
), pp.
3
32
.
15.
Golub
,
G. H.
, and
Varga
,
R. S.
,
1961
, “
Chebyshev Semi-Iterative Methods, Successive Overrelaxation Iterative Methods, and Second Order Richardson Iterative Methods
,”
Numerische Math.
,
3
(
1
), pp.
147
156
.
16.
Gutknecht
,
M. H.
, and
Röllin
,
S.
,
2002
, “
The Chebyshev Iteration Revisited
,”
Parallel Comput.
,
28
(
2
), pp.
263
283
.
17.
Gutknecht
,
M. H.
, and
Strakos
,
Z.
,
2000
, “
Accuracy of Two Three-Term and Three Two-Term Recurrences for Krylov Space Solvers
,”
SIAM J. Matrix Anal. Appl.
,
22
(
1
), pp.
213
229
.
18.
Arioli
,
M.
, and
Scott
,
J.
,
2014
, “
Chebyshev Acceleration of Iterative Refinement
,”
Numer. Algorithms
,
66
(
3
), pp.
591
608
.
19.
González
,
M.
,
González
,
F.
,
Dopico
,
D.
, and
Luaces
,
A.
,
2007
, “
On the Effect of Linear Algebra Implementations in Real-Time Multibody System Dynamics
,”
Comput. Mech.
,
41
(
4
), pp.
607
615
.
20.
Hidalgo
,
A. F.
, and
García de Jalón
,
J.
,
2015
, “
Real-Time Dynamic Simulations of Large Road Vehicles Using Dense, Sparse, and Parallelization Techniques
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
3
), p.
031005
.
21.
García de Jalón
,
J.
,
Álvarez
,
E.
,
de Ribera
,
F.
,
Rodríguez
,
I.
, and
Funes
,
F.
,
2005
, “
A Fast and Simple Semi-Recursive Formulation for Multi-Rigid-Body Systems
,”
Advances in Computational Multibody Systems
(Computational Methods in Applied Sciences), Vol.
2
,
J.
Ambrosio
, ed.,
Springer
,
Dordrecht, The Netherlands
, pp.
1
23
.
22.
Pan
,
Y.
,
Callejo
,
A.
,
Bueno
,
J. L.
,
Wehage
,
R. A.
, and
García de Jalón
,
J.
,
2017
, “
Efficient and Accurate Modeling of Rigid Rods
,”
Multibody Syst. Dyn.
,
40
(
1
), pp.
23
42
.
23.
Callejo
,
A.
, and
García de Jalón
,
J.
,
2015
, “
Vehicle Suspension Identification Via Algorithmic Computation of State and Design Sensitivities
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021403
.
24.
Callejo
,
A.
,
García de Jalón
,
J.
,
Luque
,
P.
, and
Mántaras
,
D. A.
,
2015
, “
Sensitivity-Based, Multi-Objective Design of Vehicle Suspension Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
3
), p.
031008
.
25.
Funes
,
F. J.
, and
García de Jalón
,
J.
,
2016
, “
An Efficient Dynamic Formulation for Solving Rigid and Flexible Multibody Systems Based on Semirecursive Method and Implicit Integration
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051001
.
26.
Rodríguez
,
J. I.
,
Jiménez
,
J. M.
,
Funes
,
F. J.
, and
García de Jalón
,
J.
,
2004
, “
Recursive and Residual Algorithms for the Efficient Numerical Integration of Multi-Body Systems
,”
Multibody Syst. Dyn.
,
11
(
4
), pp.
295
320
.
27.
García de Jalón
,
J.
,
Callejo
,
A.
, and
Hidalgo
,
A. F.
,
2012
, “
Efficient Solution of Maggi's Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
2
), p.
021003
.
28.
Callejo
,
A.
,
Pan
,
Y.
,
Ricón
,
J. L.
,
Kövecses
,
J.
, and
García de Jalón
,
J.
,
2016
, “
Comparison of Semirecursive and Subsystem Synthesis Algorithms for the Efficient Simulation of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
1
), p.
011020
.
29.
Jerkovsky
,
W.
,
1978
, “
The Structure of Multibody Dynamic Equations
,”
J. Guid. Control Dyn.
,
1
(
3
), pp.
173
182
.
30.
Kim
,
S.
, and
Vanderploeg
,
M.
,
1986
, “
A General and Efficient Method for Dynamic Analysis of Mechanical System Using Velocity Transformations
,”
ASME J. Mech. Des.
,
108
(
2
), pp.
176
182
.
31.
McPhee
,
J. J.
,
1996
, “
On the Use of Linear Graph Theory in Multibody System Dynamics
,”
Nonlinear Dyn.
,
9
(
1
), pp.
73
90
.
32.
Negrut
,
D.
,
Serban
,
R.
, and
Potra
,
F. A.
,
1997
, “
A Topology Based Approach to Exploiting Sparsity in Multibody Dynamics: Joint Formulation
,”
Mech. Struct. Mach.
,
25
(
2
), pp.
221
241
.
33.
Butcher
,
J. C.
,
1963
, “
Coefficients for the Study of Runge–Kutta Integration Processes
,”
J. Aust. Math. Soc.
,
3
(
2
), pp.
185
201
.
34.
Butcher
,
J. C.
,
2008
,
Numerical Methods for Ordinary Differential Equations
,
Wiley
,
Chichester, UK
.
35.
Davies
,
P. I.
,
Higham
,
N. J.
, and
Tisseur
,
F.
,
2001
, “
Analysis of the Cholesky Method With Iterative Refinement for Solving the Symmetric Definite Generalized Eigenproblem
,”
SIAM J. Matrix Anal. Appl.
,
23
(
2
), pp.
472
493
.
36.
Pacejka
,
H. B.
,
2012
,
Tyre and Vehicle Dynamics
,
Elsevier Butterworth-Heinemann
,
Oxford, UK
.
You do not currently have access to this content.