Abstract

In this paper, synchronization of two identical discrete-time chaotic systems is considered in networked control environment where communication plays a significant role along with the synchronization performance. A new event-triggered (ET) active model predictive control (MPC) technique is proposed in the presence of constraints. With the help of active control, a linear MPC is sufficient to control a chaotic system. The active controller is not present all the time, rather only activated when a triggering condition is fulfilled. The MPC also solves the optimization problem only when an event is triggered. A triggering condition is designed to ensure a required performance bound. This technique reduces the computational burden as well as the frequency of communication between sensors and controller and controller and actuator. The effectiveness of the proposed scheme is illustrated by two simulation examples. A trade-off analysis between network traffic and synchronization performance, and its dependence on the prediction horizon is done for the considered system. It reveals that an optimum trade-off can be achieved according to the desired requirement.

References

References
1.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1990
, “
Synchronization in Chaotic Systems
,”
Phys. Rev. Lett.
,
64
(
8
), pp.
821
824
.10.1103/PhysRevLett.64.821
2.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
2015
, “
Synchronization of Chaotic Systems
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
25
(
9
), p.
097611
.10.1063/1.4917383
3.
Singh
,
P. P.
,
Singh
,
J. P.
, and
Roy
,
B. K.
,
2014
, “
Synchronization and Anti-Synchronization of Lu and Bhalekar–Gejji Chaotic Systems Using Nonlinear Active Control
,”
Chaos, Solitons Fractals
,
69
, pp.
31
39
.10.1016/j.chaos.2014.09.005
4.
Rosenblum
,
M. G.
,
Pikovsky
,
A. S.
, and
Kurths
,
J.
,
1996
, “
Phase Synchronization of Chaotic Oscillators
,”
Phys. Rev. Lett.
,
76
(
11
), pp.
1804
1807
.10.1103/PhysRevLett.76.1804
5.
Jiang
,
H.
,
Liu
,
Y.
,
Zhang
,
L.
, and
Yu
,
J.
,
2016
, “
Anti-Phase Synchronization and Symmetry-Breaking Bifurcation of Impulsively Coupled Oscillators
,”
Commun. Nonlinear Sci. Numer. Simul.
,
39
, pp.
199
208
.10.1016/j.cnsns.2016.02.033
6.
Sun
,
Z.
, and
Yang
,
X.
,
2011
, “
Generating and Enhancing Lag Synchronization of Chaotic Systems by White Noise
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
21
(
3
), p.
033114
.10.1063/1.3623440
7.
Singh
,
P. P.
,
Singh
,
J. P.
, and
Roy
,
B. K.
,
2017
, “
Nac-Based Synchronisation and Anti-Synchronisation Between Hyperchaotic and Chaotic Systems, Its Analogue Circuit Design and Application
,”
IETE J. Res.
,
63
(
6
), pp.
853
869
.10.1080/03772063.2017.1331758
8.
Yao
,
W.
,
Wang
,
C.
,
Cao
,
J.
,
Sun
,
Y.
, and
Zhou
,
C.
,
2019
, “
Hybrid Multisynchronization of Coupled Multistable Memristive Neural Networks With Time Delays
,”
Neurocomputing
,
363
, pp.
281
294
.10.1016/j.neucom.2019.07.014
9.
Zhang
,
W.
,
Cao
,
J.
,
Wu
,
R.
,
Alsaadi
,
F. E.
, and
Alsaedi
,
A.
,
2019
, “
Lag Projective Synchronization of Fractional-Order Delayed Chaotic Systems
,”
J. Franklin Inst.
,
356
(
3
), pp.
1522
1534
.10.1016/j.jfranklin.2018.10.024
10.
Mahmoud
,
E. E.
,
2013
, “
Modified Projective Phase Synchronization of Chaotic Complex Nonlinear Systems
,”
Math. Comput. Simul.
,
89
, pp.
69
85
.10.1016/j.matcom.2013.02.008
11.
Singh
,
J. P.
,
Roy
,
B. K.
, and
Wei
,
Z.
,
2018
, “
A New Four-Dimensional Chaotic System With First Lyapunov Exponent of About 22, Hyperbolic Curve and Circular Paraboloid Types of Equilibria and Its Switching Synchronization by an Adaptive Global Integral Sliding Mode Control
,”
Chin. Phys. B
,
27
(
4
), p.
040503
.10.1088/1674-1056/27/4/040503
12.
Zhou
,
L.
,
Wang
,
C.
,
Du
,
S.
, and
Zhou
,
L.
,
2017
, “
Cluster Synchronization on Multiple Nonlinearly Coupled Dynamical Subnetworks of Complex Networks With Nonidentical Nodes
,”
IEEE Trans. Neural Networks Learn. Syst.
,
28
(
3
), pp.
570
583
.10.1109/TNNLS.2016.2547463
13.
Zhou
,
L.
,
Wang
,
C.
, and
Zhou
,
L.
,
2016
, “
Cluster Synchronization on Multiple Sub-Networks of Complex Networks With Nonidentical Nodes Via Pinning Control
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
1079
1100
.10.1007/s11071-015-2389-2
14.
Zhou
,
L.
,
Wang
,
C.
,
He
,
H.
, and
Lin
,
Y.
,
2015
, “
Time-Controllable Combinatorial Inner Synchronization and Outer Synchronization of Anti-Star Networks and Its Application in Secure Communication
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(
1–3
), pp.
623
640
.10.1016/j.cnsns.2014.07.006
15.
Quan
,
B.
,
Wang
,
C.
,
Sun
,
J.
, and
Zhao
,
Y.
,
2018
, “
A Novel Adaptive Active Control Projective Synchronization of Chaotic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
5
), p. 051001. 10.1115/1.4039189
16.
Anguiano-Gijón
,
C. A.
,
Muñoz-Vázquez
,
A. J.
,
Sánchez-Torres
,
J. D.
,
Romero-Galván
,
G.
, and
Martínez-Reyes
,
F.
,
2019
, “
On Predefined-Time Synchronisation of Chaotic Systems
,”
Chaos, Solitons Fractals
,
122
, pp.
172
178
.10.1016/j.chaos.2019.03.015
17.
Wu
,
X.
,
Chen
,
G.
, and
Cai
,
J.
,
2007
, “
Chaos Synchronization of the Master–Slave Generalized Lorenz Systems Via Linear State Error Feedback Control
,”
Phys. D: Nonlinear Phenom.
,
229
(
1
), pp.
52
80
.10.1016/j.physd.2007.03.014
18.
Odibat
,
Z.
,
Corson
,
N.
,
Aziz-Alaoui
,
M.
, and
Alsaedi
,
A.
,
2017
, “
Chaos in Fractional Order Cubic Chua System and Synchronization
,”
Int. J. Bifurcation Chaos
,
27
(
10
), p.
1750161
.10.1142/S0218127417501619
19.
Dongmo
,
E. D.
,
Ojo
,
K. S.
,
Woafo
,
P.
, and
Njah
,
A. N.
,
2018
, “
Difference Synchronization of Identical and Nonidentical Chaotic and Hyperchaotic Systems of Different Orders Using Active Backstepping Design
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
5
), p. 051005.10.1115/1.4039626
20.
Aghababa
,
M. P.
, and
Hashtarkhani
,
B.
,
2015
, “
Synchronization of Unknown Uncertain Chaotic Systems Via Adaptive Control Method
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p. 051004.10.1115/1.4027976
21.
Li
,
C.
,
Su
,
K.
, and
Wu
,
L.
,
2013
, “
Adaptive Sliding Mode Control for Synchronization of a Fractional-Order Chaotic System
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p. 031005.10.1115/1.4007910
22.
Dutta
,
M.
, and
Roy
,
B. K.
,
2020
, “
A New Fractional-Order System Displaying Coexisting Multiwing Attractors; Its Synchronisation and Circuit Simulation
,”
Chaos, Solitons Fractals
,
130
, p.
109414
.10.1016/j.chaos.2019.109414
23.
Chen
,
D.
,
Zhang
,
R.
,
Ma
,
X.
, and
Liu
,
S.
,
2012
, “
Chaotic Synchronization and Anti-Synchronization for a Novel Class of Multiple Chaotic Systems Via a Sliding Mode Control Scheme
,”
Nonlinear Dyn.
,
69
(
1–2
), pp.
35
55
.10.1007/s11071-011-0244-7
24.
Li
,
H.
,
Liao
,
X.
,
Li
,
C.
, and
Li
,
C.
,
2011
, “
Chaos Control and Synchronization Via a Novel Chatter Free Sliding Mode Control Strategy
,”
Neurocomputing
,
74
(
17
), pp.
3212
3222
.10.1016/j.neucom.2011.05.002
25.
Khamsuwan
,
P.
,
Sangpet
,
T.
, and
Kuntanapreeda
,
S.
,
2018
, “
Chaos Synchronization of Fractional-Order Chaotic Systems With Input Saturation
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
9
), p. 090903.10.1115/1.4039681
26.
Liu
,
Y.
, and
Lee
,
S.-M.
,
2016
, “
Synchronization Criteria of Chaotic Lur'e Systems With Delayed Feedback PD Control
,”
Neurocomputing
,
189
, pp.
66
71
.10.1016/j.neucom.2015.12.058
27.
Longge
,
Z.
, and
Xiangjie
,
L.
,
2013
, “
The Synchronization Between Two Discrete-Time Chaotic Systems Using Active Robust Model Predictive Control
,”
Nonlinear Dyn.
,
74
(
4
), pp.
905
910
.10.1007/s11071-013-1009-2
28.
Kwon
,
O.
,
Son
,
J.
, and
Lee
,
S.
,
2013
, “
Constrained Predictive Synchronization of Discrete-Time Chaotic Lur'e Systems With Time-Varying Delayed Feedback Control
,”
Nonlinear Dyn.
,
72
(
1–2
), pp.
129
140
.10.1007/s11071-012-0697-3
29.
Jiang
,
W.
,
Wang
,
H.
,
Lu
,
J.
,
Cai
,
G.
, and
Qin
,
W.
,
2017
, “
Synchronization for Chaotic Systems Via Mixed-Objective Dynamic Output Feedback Robust Model Predictive Control
,”
J. Franklin Inst.
,
354
(
12
), pp.
4838
4860
.10.1016/j.jfranklin.2017.05.007
30.
Eqtami
,
A.
,
Dimarogonas
,
D. V.
, and
Kyriakopoulos
,
K. J.
,
2010
, “
Event-Triggered Control for Discrete-Time Systems
,”
Proceedings of the American Control Conference
,
IEEE
,
Baltimore, MD
, June 30–July 2, pp.
4719
4724
.10.1109/ACC.2010.5531089
31.
Pawlowski
,
A.
,
Guzman
,
J. L.
,
Berenguel
,
M.
,
Normey-Rico
,
J. E.
, and
Dormido
,
S.
,
2017
, “
Event-Based Gpc for Multivariable Processes: A Practical Approach With Sensor Deadband
,”
IEEE Trans. Control Syst. Technol.
,
25
(
5
), pp.
1621
1633
.10.1109/TCST.2016.2620061
32.
Zhang
,
X.-M.
,
Han
,
Q.-L.
, and
Zhang
,
B.-L.
,
2017
, “
An Overview and Deep Investigation on Sampled-Data-Based Event-Triggered Control and Filtering for Networked Systems
,”
IEEE Trans. Ind. Inf.
,
13
(
1
), pp.
4
16
.10.1109/TII.2016.2607150
33.
Hashimoto
,
K.
,
Adachi
,
S.
, and
Dimarogonas
,
D. V.
,
2017
, “
Event-Triggered Intermittent Sampling for Nonlinear Model Predictive Control
,”
Automatica
,
81
, pp.
148
155
.10.1016/j.automatica.2017.03.028
34.
Liuzza
,
D.
,
Dimarogonas
,
D. V.
,
Di Bernardo
,
M.
, and
Johansson
,
K. H.
,
2016
, “
Distributed Model Based Event-Triggered Control for Synchronization of Multi-Agent Systems
,”
Automatica
,
73
, pp.
1
7
.10.1016/j.automatica.2016.06.011
35.
Liu
,
X.
,
Su
,
X.
,
Shi
,
P.
, and
Shen
,
C.
,
2019
, “
Observer-Based Sliding Mode Control for Uncertain Fuzzy Systems Via Event-Triggered Strategy
,”
IEEE Trans. Fuzzy Syst.
,
27
(
11
), pp.
2190
2201
.10.1109/TFUZZ.2019.2895804
36.
Zhang
,
J.
,
Liu
,
S.
, and
Liu
,
J.
,
2014
, “
Economic Model Predictive Control With Triggered Evaluations: State and Output Feedback
,”
J. Process Control
,
24
(
8
), pp.
1197
1206
.10.1016/j.jprocont.2014.03.009
37.
Boruah
,
N.
, and
Roy
,
B. K.
,
2019
, “
Event Triggered Nonlinear Model Predictive Control for a Wastewater Treatment Plant
,”
J. Water Process Eng.
,
32
, p.
100887
.10.1016/j.jwpe.2019.100887
38.
Eqtami
,
A.
,
Dimarogonas
,
D. V.
, and
Kyriakopoulos
,
K. J.
,
2011
, “
Event-Triggered Strategies for Decentralized Model Predictive Controllers
,”
IFAC Proc. Vol.
,
44
(
1
), pp.
10068
10073
.10.3182/20110828-6-IT-1002.03540
39.
Sun
,
Z.
,
Dai
,
L.
,
Xia
,
Y.
, and
Liu
,
K.
,
2018
, “
Event-Based Model Predictive Tracking Control of Nonholonomic Systems With Coupled Input Constraint and Bounded Disturbances
,”
IEEE Trans. Autom. Control
,
63
(
2
), pp.
608
615
.10.1109/TAC.2017.2736518
40.
Kolmanovsky
,
I.
, and
Gilbert
,
E. G.
,
1998
, “
Theory and Computation of Disturbance Invariant Sets for Discrete-Time Linear Systems
,”
Math. Prob. Eng.
,
4
(
4
), pp.
317
367
.10.1155/S1024123X98000866
41.
Blanchini
,
F.
,
1999
, “
Set Invariance in Control
,”
Automatica
,
35
(
11
), pp.
1747
1767
.10.1016/S0005-1098(99)00113-2
42.
Rakovic
,
S. V.
,
Kerrigan
,
E. C.
,
Kouramas
,
K. I.
, and
Mayne
,
D. Q.
,
2005
, “
Invariant Approximations of the Minimal Robust Positively Invariant Set
,”
IEEE Trans. Autom. Control
,
50
(
3
), pp.
406
410
.10.1109/TAC.2005.843854
43.
Brunner
,
F. D.
,
Heemels
,
W.
, and
Allgöwer
,
F.
,
2017
, “
Robust Event-Triggered MPC With Guaranteed Asymptotic Bound and Average Sampling Rate
,”
IEEE Trans. Autom. Control
,
62
(
11
), pp.
5694
5709
.10.1109/TAC.2017.2702646
44.
Henon
,
M.
,
1976
, “
A Two-Dimensional Mapping With a Strange Attractor
,”
Commun. Math. Phys.
,
50
, pp.
69
77
.10.1007/BF01608556
45.
Stefański
,
K.
,
1998
, “
Modelling Chaos and Hyperchaos With 3-d Maps
,”
Chaos, Solitons Fractals
,
9
(
1–2
), pp.
83
93
.10.1016/S0960-0779(97)00051-9
You do not currently have access to this content.