Abstract

Drill strings are subjected to complex coupled dynamics. Therefore, accurate dynamic modeling, which can represent the physical behavior of real drill strings, is of great importance for system analysis and control. The most widely used dynamic models for such systems are the lumped element models, which neglect the system distributed feature. In this paper, a dynamic model called neutral-type time delay model is modified to investigate the coupled axial–torsional vibrations in drill strings. This model is derived directly from the distributed parameter model by employing the d'Alembert method. Coupling of axial and torsional vibration modes occurs in the bit–rock interface. For the first time, the neutral-type time delay model is combined with a bit–rock interaction model that regards cutting process in addition to frictional contact. Moreover, mistakes made in some of the related previous studies are corrected. The resulting equations of motion are in terms of neutral-type delay differential equations with two constant delays, related to the oscillatory behavior of the system, and a state-dependent delay, induced by the bit–rock interaction. Illustrative simulation results are presented for a representative drill string, which demonstrates intense axial and torsional vibrations that may lead to system failure without a controller.

References

References
1.
Liao
,
C.-M.
,
Balachandran
,
B.
,
Karkoub
,
M.
, and
Abdel-Magid
,
Y. L.
,
2011
, “
Drill-String Dynamics: Reduced-Order Models and Experimental Studies
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041008
.10.1115/1.4003406
2.
Yigit
,
A. S.
, and
Christoforou
,
A. P.
,
2006
, “
Stick-Slip and Bit-Bounce Interaction in Oil-Well Drill strings
,”
ASME J. Energy Resour. Technol.
,
128
(
4
), pp.
268
274
.10.1115/1.2358141
3.
Márquez
,
M. B. S.
,
Boussaada
,
I.
,
Mounier
,
H.
, and
Niculescu
,
S.-I.
,
2015
,
Analysis and Control of Oilwell Drilling Vibrations: A Time-Delay Systems Approach
,
Springer
,
New York
.
4.
Navarro-López
,
E. M.
,
2009
, “
An Alternative Characterization of Bit-Sticking Phenomena in a Multi-Degree-of-Freedom Controlled Drill string
,”
Nonlinear Anal.: Real World Appl.
,
10
(
5
), pp.
3162
3174
.10.1016/j.nonrwa.2008.10.025
5.
Besselink
,
B.
,
Van De Wouw
,
N.
, and
Nijmeijer
,
H.
,
2011
, “
A Semi-Analytical Study of Stick-Slip Oscillations in Drilling Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021006
.10.1115/1.4002386
6.
Liu
,
X.
,
Vlajic
,
N.
,
Long
,
X.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2013
, “
Nonlinear Motions of a Flexible Rotor With a Drill Bit: Stick-Slip and Delay Effects
,”
Nonlinear Dyn.
,
72
(
1–2
), pp.
61
77
.10.1007/s11071-012-0690-x
7.
Liu
,
X.
,
Vlajic
,
N.
,
Long
,
X.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2014
, “
Coupled Axial-Torsional Dynamics in Rotary Drilling With State-Dependent Delay: Stability and Control
,”
Nonlinear Dyn.
,
78
(
3
), pp.
1891
1906
.10.1007/s11071-014-1567-y
8.
Bailey
,
J.
, and
Finnie
,
I.
,
1960
, “
An Analytical Study of Drill-String Vibration
,”
J. Eng. Ind.
,
82
(
2
), pp.
122
127
.10.1115/1.3663017
9.
Bresch-Pietri
,
D.
, and
Krstic
,
M.
,
2014
, “
Adaptive Output-Feedback for Wave PDE With Anti-Damping—Application to Surface-Based Control of Oil Drilling Stick-Slip Instability
,”
IEEE 53rd Annual Conference on Decision and Control
(
CDC
), Los Angeles, CA, Dec. 15–17, pp.
1295
1300
.10.1109/CDC.2014.7039560
10.
Barton
,
D. A.
,
Krauskopf
,
B.
, and
Wilson
,
R. E.
,
2010
, “
Nonlinear Dynamics of Torsional Waves in a Drill-String Model With Spatial Extent
,”
J. Vib. Control
,
16
(
7–8
), pp.
1049
1065
.10.1177/1077546309341108
11.
Saldivar
,
B.
,
Mondié
,
S.
,
Loiseau
,
J.-J.
, and
Rasvan
,
V.
,
2011
, “
Stick-Slip Oscillations in Oil well Drill strings: Distributed Parameter and Neutral Type Retarded Model Approaches
,”
IFAC Proc. Vol.
,
44
(
1
), pp.
284
289
.10.3182/20110828-6-IT-1002.00084
12.
Saldivar
,
B.
,
Mondié
,
S.
,
Loiseau
,
J. J.
, and
Rasvan
,
V.
,
2013
, “
Suppressing Axial-Torsional Coupled Vibrations in Drill strings
,”
J. Control Eng. Appl. Inf.
,
15
(
1
), pp.
3
10
.
13.
Saldivar
,
B.
,
Knüppel
,
T.
,
Woittennek
,
F.
,
Boussaada
,
I.
,
Mounier
,
H.
, and
Niculescu
,
S.-I.
,
2014
, “
Flatness-Based Control of Torsional-Axial Coupled Drilling Vibrations
,”
IFAC Proc. Vol.
,
47
(
3
), pp.
7324
7329
.10.3182/20140824-6-ZA-1003.02205
14.
Richard
,
T.
,
Germay
,
C.
, and
Detournay
,
E.
,
2004
, “
Self-Excited Stick–Slip Oscillations of Drill Bits
,”
C. R. Mec.
,
332
(
8
), pp.
619
626
.10.1016/j.crme.2004.01.016
15.
Richard
,
T.
,
Germay
,
C.
, and
Detournay
,
E.
,
2007
, “
A Simplified Model to Explore the Root Cause of Stick–Slip Vibrations in Drilling Systems With Drag Bits
,”
J. Sound Vib.
,
305
(
3
), pp.
432
456
.10.1016/j.jsv.2007.04.015
16.
Germay
,
C.
,
Denoël
,
V.
, and
Detournay
,
E.
,
2009
, “
Multiple Mode Analysis of the Self-Excited Vibrations of Rotary Drilling Systems
,”
J. Sound Vib.
,
325
(
1–2
), pp.
362
381
.10.1016/j.jsv.2009.03.017
17.
Germay
,
C.
,
Van de Wouw
,
N.
,
Nijmeijer
,
H.
, and
Sepulchre
,
R.
,
2009
, “
Nonlinear Drill string Dynamics Analysis
,”
SIAM J. Appl. Dyn. Syst.
,
8
(
2
), pp.
527
553
.10.1137/060675848
18.
Gupta
,
S. K.
, and
Wahi
,
P.
,
2016
, “
Global Axial–Torsional Dynamics During Rotary Drilling
,”
J. Sound Vib.
,
375
, pp.
332
352
.10.1016/j.jsv.2016.04.021
19.
Gupta
,
S. K.
, and
Wahi
,
P.
,
2018
, “
Criticality of Bifurcation in the Tuned Axial–Torsional Rotary Drilling Model
,”
Nonlinear Dyn.
,
91
(
1
), pp.
113
130
.10.1007/s11071-017-3859-5
20.
Boussaada
,
I.
,
Mounier
,
H.
,
Niculescu
,
S.-I.
, and
Cela
,
A.
,
2012
, “
Analysis of Drilling Vibrations: A Time-Delay System Approach
,”
20th Mediterranean Conference on Control and Automation
(
MED
), Barcelona, Spain, July 3–6, pp.
610
614
.10.1109/MED.2012.6265705
21.
Besselink
,
B.
,
Vromen
,
T.
,
Kremers
,
N.
, and
van de Wouw
,
N.
,
2016
, “
Analysis and Control of Stick-Slip Oscillations in Drilling Systems
,”
IEEE Trans. Control Syst. Technol.
,
24
(
5
), pp.
1582
1593
.10.1109/TCST.2015.2502898
22.
Shampine
,
L. F.
,
2008
, “
Dissipative Approximations to Neutral DDEs
,”
Appl. Math. Comput.
,
203
(
2
), pp.
641
648
.
23.
Richard
,
J.-P.
,
2003
, “
Time-Delay Systems: An Overview of Some Recent Advances and Open Problems
,”
Automatica
,
39
(
10
), pp.
1667
1694
.10.1016/S0005-1098(03)00167-5
You do not currently have access to this content.