Abstract

Prey and predator are the important factor of the ecosystem. Generally, it is considered that prey–predator models depends on time and it is only required nonlinear system of equations for its dynamical study. But, it is observed that such species can move from one to place to another and in such a way there is a need of nonlinear equations which also depends on spatial as well. The stochastic prey–predator system are investigated numerically and analytically. The proposed stochastic NSFD is used for numerical study; it is consistent with given system and its linear stability analysis showed that it is unconditionally stable. There are two equilibria one is predator free and second is coexistence equilibrium. These equilibria are successfully gained in the numerical case. Extended generalized Riccati equation mapping method is applied for analytical study. The obtained solutions are of the form rational, hyperbolic, and trigonometric. For the comparative study, the unique physical problems are developed and their simulations are drawn for various choices of the parameters. The graphical behavior depicts the efficacy of our study.

References

1.
Täuber
,
U. C.
,
2011
, “
Stochastic Population Oscillations in Spatial Predator-Prey Models
,”
J. Phys.: Conf. Ser.
,
319
(
1
), p.
012019
.10.1088/1742-6596/319/1/012019
2.
Nunney
,
L.
,
1980
, “
The Stability of Complex Model Ecosystems
,”
Am. Nat.
,
115
(
5
), pp.
639
649
.10.1086/283589
3.
Deng
,
Z. W.
,
Jin
,
Y. H.
,
Gao
,
W.
, and
Wang
,
B. H.
,
2023
, “
A Closed-Loop Directional Dynamics Control With LQR Active Trailer Steering for Articulated Heavy Vehicle
,”
Proc. Inst. Mech. Eng., Part D
,
237
(
12
), pp.
2741
2758
.10.1177/09544070221121859
4.
Liao
,
L.
,
Guo
,
Z.
,
Gao
,
Q.
,
Wang
,
Y.
,
Yu
,
F.
,
Zhao
,
Q.
,
Maybank
,
S. J.
,
Liu
,
Z.
,
Li
,
C.
, and
Li
,
L.
,
2023
, “
Color Image Recovery Using Generalized Matrix Completion Over Higher-Order Finite Dimensional Algebra
,”
Axioms
,
12
(
10
), p.
954
.10.3390/axioms12100954
5.
Janssen
,
M. A.
,
Anderies
,
J. M.
, and
Ostrom
,
E.
,
2007
, “
Robustness of Social-Ecological Systems to Spatial and Temporal Variability
,”
Soc. Nat. Resour.
,
20
(
4
), pp.
307
322
.10.1080/08941920601161320
6.
Bacaër
,
N.
, and
Bacaër
,
N.
,
2011
, “
Lotka, Volterra and the Predator–Prey System (1920–1926)
,”
A Short History of Mathematical Population Dynamics
,
Springer
,
London
, pp.
71
76
.
7.
Wang
,
W.
,
Liu
,
Q. X.
, and
Jin
,
Z.
,
2007
, “
Spatiotemporal Complexity of a Ratio-Dependent Predator-Prey System
,”
Phys. Rev. E
,
75
(
5
), p.
051913
.10.1103/PhysRevE.75.051913
8.
Nhu
,
N. N.
, and
Yin
,
G.
,
2018
, “
Stochastic Partial Differential Equation Models for Spatially Dependent Predator-Prey Equations
,”
Discrete Contin. Dyn. Syst-B.
, 25(1), pp.
117
139
.10.3934/dcdsb.2019175
9.
Washenberger
,
M. J.
,
Mobilia
,
M.
, and
Täuber
,
U. C.
,
2007
, “
Influence of Local Carrying Capacity Restrictions on Stochastic Predator–Prey Models
,”
J. Phys.: Condens. Matter
,
19
(
6
), p.
065139
.10.1088/0953-8984/19/6/065139
10.
Guo
,
J.
,
Liu
,
Y.
,
Zou
,
Q.
,
Ye
,
L.
,
Zhu
,
S.
, and
Zhang
,
H.
,
2023
, “
Study on Optimization and Combination Strategy of Multiple Daily Runoff Prediction Models Coupled With Physical Mechanism and LSTM
,”
J. Hydrol.
,
624
, p.
129969
.10.1016/j.jhydrol.2023.129969
11.
Lin
,
S.
,
Zhang
,
J.
, and
Qiu
,
C.
,
2023
, “
Asymptotic Analysis for One-Stage Stochastic Linear Complementarity Problems and Applications
,”
Mathematics
,
11
(
2
), p.
482
.10.3390/math11020482
12.
Jiang
,
X.
,
Wang
,
Y.
,
Zhao
,
D.
, and
Shi
,
L.
,
2024
, “
Online Pareto Optimal Control of Mean-Field Stochastic Multi-Player Systems Using Policy Iteration
,”
Sci. China Inf. Sci.
,
67
(
4
), p. 140202.10.1007/s11432-023-3982-y
13.
Liang
,
A.
,
Lv
,
T.
,
Pan
,
B.
,
Zhu
,
Z.
,
Haotian
,
R.
,
Xie
,
Y.
,
Sun
,
L.
,
Zhang
,
J.
, and
Luo
,
A.
,
2024
, “
Dynamic Simulation and Experimental Studies of Molecularly Imprinted Label-Free Sensor for Determination of Milk Quality Marker
,”
Food Chem.
,
449
, p.
139238
.10.1016/j.foodchem.2024.139238
14.
Zhang
,
T.
,
Deng
,
F.
, and
Shi
,
P.
,
2023
, “
Non-Fragile Finite-Time Stabilization for Discrete Mean-Field Stochastic Systems
,”
IEEE Trans. Autom. Control
,
68
(
10
), pp.
6423
6430
.10.1109/TAC.2023.3238849
15.
Hashemi, M. S., and Mirzazadeh, M., 2023, “Exact solutions of nonlinear stochastic Newell-Whitehead-Segel equation by a reduction technique,”
Eur. Phys. J. Plus.
, 138(11), p. 101610.1140/epjp/s13360-023-04648-0.
16.
Arif
,
M. S.
,
Abodayeh
,
K.
, and
Nawaz
,
Y.
,
2023
, “
A Reliable Computational Scheme for Stochastic Reaction–Diffusion Nonlinear Chemical Model
,”
Axioms
,
12
(
5
), p.
460
.10.3390/axioms12050460
17.
Raza
,
A.
,
Arif
,
M. S.
, and
Rafiq
,
M.
,
2019
, “
A Reliable Numerical Analysis for Stochastic Dengue Epidemic Model With Incubation Period of Virus
,”
Adv. Differ. Equations
,
2019
(
1
), p. 32.10.1186/s13662-019-1958-y
18.
Kovács
,
M.
,
Larsson
,
S.
, and
Lindgren
,
F.
,
2015
, “
On the Backward Euler Approximation of the Stochastic Allen-Cahn Equation
,”
J. Appl. Probab.
,
52
(
2
), pp.
323
338
.10.1239/jap/1437658601
19.
Yasin
,
M. W.
,
Iqbal
,
M. S.
,
Seadawy
,
A. R.
,
Baber
,
M. Z.
,
Younis
,
M.
, and
Rizvi
,
S. T.
,
2023
, “
Numerical Scheme and Analytical Solutions to the Stochastic Nonlinear Advection Diffusion Dynamical Model
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
24
(
2
), pp.
467
487
.10.1515/ijnsns-2021-0113
20.
Mohammed, W. W., and Blömker, D., 2016, “Fast-diffusion limit with large noise for systems of stochastic reaction-diffusion equations,”
Stochastic Anal. App.
, 34(6), pp.
961
978
.10.1080/07362994.2016.1197131
21.
Arif, M. S., Abodayeh, K., and Ejaz, A., 2023, “On the stability of the diffusive and non-diffusive predator-prey system with consuming resources and disease in prey species,” Math. Biosci. Eng., 20(3), pp.
5066
5093
.10.3934/mbe.2023235
22.
Mohammed
,
W. W.
,
Al-Askar
,
F. M.
,
Cesarano
,
C.
, and
El-Morshedy
,
M.
,
2023
, “
Solitary Wave Solution of a Generalized Fractional–Stochastic Nonlinear Wave Equation for a Liquid With Gas Bubbles
,”
Mathematics
,
11
(
7
), p.
1692
.10.3390/math11071692
23.
Mohammed
,
W. W.
,
El-Morshedy
,
M.
,
Cesarano
,
C.
, and
Al-Askar
,
F. M.
,
2023
, “
Soliton Solutions of Fractional Stochastic Kraenkel–Manna–Merle Equations in Ferromagnetic Materials
,”
Fractal Fractional
,
7
(
4
), p.
328
.10.3390/fractalfract7040328
24.
Zhu
,
C.
,
Abdallah
,
S. A. O.
,
Rezapour
,
S.
, and
Shateyi
,
S.
,
2023
, “
On New Diverse Variety Analytical Optical Soliton Solutions to the Perturbed Nonlinear Schrödinger Equation
,”
Results Phys.
,
54
, p.
107046
.10.1016/j.rinp.2023.107046
25.
Zhu
,
C.
,
Idris
,
S. A.
,
Abdalla
,
M. E. M.
,
Rezapour
,
S.
,
Shateyi
,
S.
, and
Gunay
,
B.
,
2023
, “
Analytical Study of Nonlinear Models Using a Modified Schrödinger's Equation and Logarithmic Transformation
,”
Results Phys.
,
55
, p.
107183
.10.1016/j.rinp.2023.107183
26.
Seadawy
,
A. R.
,
Younis
,
M.
,
Baber
,
M. Z.
,
Iqbal
,
M. S.
, and
Rizvi
,
S. T.
,
2022
, “
Nonlinear Acoustic Wave Structures to the Zabolotskaya-Khokholov Dynamical Model
,”
J. Geom. Phys.
,
175
, p.
104474
.10.1016/j.geomphys.2022.104474
27.
Younis
,
M.
,
Seadawy
,
A. R.
,
Baber
,
M. Z.
,
Husain
,
S.
,
Iqbal
,
M. S.
,
Rizvi
,
S. T. R.
, and
Baleanu
,
D.
,
2021
, “
Analytical Optical Soliton Solutions of the Schrödinger-Poisson Dynamical System
,”
Results Phys.
,
27
, p.
104369
.10.1016/j.rinp.2021.104369
28.
Zhao
,
Y. H.
,
Iqbal
,
M. S.
,
Baber
,
M. Z.
,
Inc
,
M.
,
Ahmed
,
M. O.
, and
Khurshid
,
H.
,
2023
, “
On Traveling Wave Solutions of an Autocatalytic Reaction–Diffusion Selkov–Schnakenberg System
,”
Results Phys.
,
44
, p.
106129
.10.1016/j.rinp.2022.106129
29.
Iqbal
,
M. S.
,
Seadawy
,
A. R.
,
Baber
,
M. Z.
,
Ahmed
,
N.
, and
Yasin
,
M. W.
,
2023
, “
Extraction of Solitons for Time Incapable Illimitable Paraxial Wave Equation in Kerr-Media
,”
Int. J. Mod. Phys. B
,
37
(
13
), p.
2350122
.10.1142/S0217979223501229
30.
Arnous
,
A. H.
, and
Mirzazadeh
,
M.
,
2016
, “
Application of the Generalized Kudryashov Method to the Eckhaus Equation
,”
Nonlinear Anal.: Modell. Control
,
21
(
5
), pp.
577
586
.10.15388/NA.2016.5.1
31.
Zhu
,
S. D.
,
2008
, “
The Generalizing Riccati Equation Mapping Method in Non-Linear Evolution Equation: Application to (2 + 1)-Dimensional Boiti–Leon–Pempinelle Equation
,”
Chaos, Solitons Fractals
,
37
(
5
), pp.
1335
1342
.10.1016/j.chaos.2006.10.015
32.
Nisar
,
K. S.
,
Alsallami
,
S. A. M.
,
Inc
,
M.
,
Iqbal
,
M. S.
,
Baber
,
M. Z.
, and
Tarar
,
M. A.
,
2022
, “
On the Exact Solutions of Nonlinear Extended Fisher-Kolmogorov Equation by Using the He's Variational Approach
,”
AIMS Math.
,
7
(
8
), pp.
13874
13886
.10.3934/math.2022766
33.
Iqbal
,
M. S.
,
Seadawy
,
A. R.
,
Baber
,
M. Z.
, and
Qasim
,
M.
,
2022
, “
Application of Modified Exponential Rational Function Method to Jaulent–Miodek System Leading to Exact Classical Solutions
,”
Chaos, Solitons Fractals
,
164
, p.
112600
.10.1016/j.chaos.2022.112600
34.
Zhu
,
C.
,
Al-Dossari
,
M.
,
Rezapour
,
S.
, and
Shateyi
,
S.
,
2023
, “
On the Exact Soliton Solutions and Different Wave Structures to the Modified Schrödinger's Equation
,”
Results Phys.
,
54
, p.
107037
.10.1016/j.rinp.2023.107037
35.
Zhu
,
C.
,
Al-Dossari
,
M.
,
El-Gawaad
,
N. S. A.
,
Alsallami
,
S. A. M.
, and
Shateyi
,
S.
,
2023
, “
Uncovering Diverse Soliton Solutions in the Modified Schrödinger's Equation Via Innovative Approaches
,”
Results Phys.
,
54
, p.
107100
.10.1016/j.rinp.2023.107100
36.
Zhu
,
C.
,
Al-Dossari
,
M.
,
Rezapour
,
S.
,
Alsallami
,
S. A. M.
, and
Gunay
,
B.
,
2024
, “
Bifurcations, Chaotic Behavior, and Optical Solutions for the Complex Ginzburg–Landau Equation
,”
Results Phys.
,
59
, p.
107601
.10.1016/j.rinp.2024.107601
37.
Roth
,
C.
,
2002
, “
Difference Methods for Stochastic Partial Differential Equations
,”
ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech.
,
82
(
11–12
), pp.
821
830
.10.1002/1521-4001(200211)82:11/12<821::AID-ZAMM821>3.0.CO;2-L
38.
Yasin
,
M. W.
,
Ahmed
,
N.
,
Iqbal
,
M. S.
,
Rafiq
,
M.
,
Raza
,
A.
, and
Akgül
,
A.
,
2023
, “
Reliable Numerical Analysis for Stochastic Reaction-Diffusion System
,”
Phys. Scr.
,
98
(
1
), p.
015209
.10.1088/1402-4896/aca847
39.
Wang
,
X.
,
Yasin
,
M. W.
,
Ahmed
,
N.
,
Rafiq
,
M.
, and
Abbas
,
M.
,
2022
, “
Numerical Approximations of Stochastic Gray-Scott Model With Two Novel Schemes
,”
AIMS Math.
,
8
(
3
), pp.
5124
5147
.10.3934/math.2023257
40.
Gyöngy
,
I.
, and
Martínez
,
T.
,
2006
, “
On Numerical Solution of Stochastic Partial Differential Equations of Elliptic Type
,”
Stochastics: Int. J. Probab. Stochastics Processes
,
78
(
4
), pp.
213
231
.10.1080/17442500600805047
41.
Burrage
,
K.
, and
Burrage
,
P. M.
,
1996
, “
High Strong Order Explicit Runge-Kutta Methods for Stochastic Ordinary Differential Equations
,”
Appl. Numer. Math.
,
22
(
1–3
), pp.
81
101
.10.1016/S0168-9274(96)00027-X
42.
Yasin
,
M. W.
,
Ahmed
,
N.
,
Iqbal
,
M. S.
,
Raza
,
A.
,
Rafiq
,
M.
,
Eldin
,
E. M. T.
, and
Khan
,
I.
,
2023
, “
Spatio-Temporal Numerical Modeling of Stochastic Predator-Prey Model
,”
Sci. Rep.
,
13
(
1
), p.
1990
.10.1038/s41598-023-28324-6
43.
Iqbal
,
M. S.
,
Yasin
,
M. W.
,
Ahmed
,
N.
,
Akgül
,
A.
,
Rafiq
,
M.
, and
Raza
,
A.
,
2023
, “
Numerical Simulations of Nonlinear Stochastic Newell-Whitehead-Segel Equation and Its Measurable Properties
,”
J. Comput. Appl. Math.
,
418
, p.
114618
.10.1016/j.cam.2022.114618
44.
Yasin
,
M. W.
,
Iqbal
,
M. S.
,
Ahmed
,
N.
,
Akgül
,
A.
,
Raza
,
A.
,
Rafiq
,
M.
, and
Riaz
,
M. B.
,
2022
, “
Numerical Scheme and Stability Analysis of Stochastic Fitzhugh–Nagumo Model
,”
Results Phys.
,
32
, p.
105023
.10.1016/j.rinp.2021.105023
45.
Jentzen
,
A.
, and
Kloeden
,
P. E.
,
2009
, “
The Numerical Approximation of Stochastic Partial Differential Equations
,”
Milan J. Math.
,
77
(
1
), pp.
205
244
.10.1007/s00032-009-0100-0
46.
Deb
,
M. K.
,
Babuška
,
I. M.
, and
Oden
,
J. T.
,
2001
, “
Solution of Stochastic Partial Differential Equations Using Galerkin Finite Element Techniques
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
48
), pp.
6359
6372
.10.1016/S0045-7825(01)00237-7
47.
Naher
,
H.
,
Abdullah
,
F. A.
, and
Mohyud-Din
,
S. T.
,
2013
, “
Extended Generalized Riccati Equation Mapping Method for the Fifth-Order Sawada-Kotera Equation
,”
AIP Adv.
,
3
(
5
), p. 052104.10.1063/1.4804433
48.
Zhu
,
C.
,
Al-Dossari
,
M.
,
Rezapour
,
S.
, and
Gunay
,
B.
,
2024
, “
On the Exact Soliton Solutions and Different Wave Structures to the (2 + 1) Dimensional Chaffee–Infante Equation
,”
Results Phys.
,
57
, p.
107431
.10.1016/j.rinp.2024.107431
49.
Zhu
,
C.
,
Al-Dossari
,
M.
,
Rezapour
,
S.
,
Shateyi
,
S.
, and
Gunay
,
B.
,
2024
, “
Analytical Optical Solutions to the Nonlinear Zakharov System Via Logarithmic Transformation
,”
Results Phys.
,
56
, p.
107298
.10.1016/j.rinp.2023.107298
50.
Zhu
,
C.
,
2023
, “
Optimizing and Using AI to Study of the Cross-Section of Finned Tubes for Nanofluid-Conveying in Solar Panel Cooling With Phase Change Materials
,”
Eng. Anal. Boundary Elem.
,
157
, pp.
71
81
.10.1016/j.enganabound.2023.08.018
51.
Kai
,
Y.
,
Chen
,
S.
,
Zhang
,
K.
, and
Yin
,
Z.
,
2022
, “
Exact Solutions and Dynamic Properties of a Nonlinear Fourth-Order Time-Fractional Partial Differential Equation
,”
Waves Random Complex Media
, 32, pp.
1
12
.10.1080/17455030.2022.2044541
52.
Kai
,
Y.
,
Ji
,
J.
, and
Yin
,
Z.
,
2022
, “
Study of the Generalization of Regularized Long-Wave Equation
,”
Nonlinear Dyn.
,
107
(
3
), pp.
2745
2752
.10.1007/s11071-021-07115-6
You do not currently have access to this content.