Abstract

Crash boxes play a crucial role in cars by serving as energy-absorbing components, typically located at the front end. They are intentionally designed to collapse in a controlled manner during frontal collisions. The objective of this research is to enhance the energy absorption capabilities of crash boxes through the integration of strut-based lattice patterns. Initially, crash boxes of various geometries suitable for lattice insertion were selected and optimized by analyzing their energy absorption capacity using Abaqus software. The analysis revealed that the square crash box exhibited the highest energy absorption. Subsequently, the procedure entailed integrating various unit cell-based lattice patterns into square crash box. These constructed models were subjected to simulations to evaluate their specific energy absorption (SEA) performance, which is ratio of energy absorbed to its mass. The simulation outcomes conclusively determined the body-centered cubic (BCC) crash box as the most effective among the considered structures. During optimization, fine-tuning the BCC crash box has been done by adjusting unit cell dimensions and strut diameter, which boosts energy absorption by 30.16% compared to the initial square crash box. While comparing present structures with honeycomb structures, the peak load values in present structures are lower than those in honeycomb structures.

References

1.
Hussain
,
N. N.
,
Regalla
,
S. P.
, and
Rao
,
Y. V. D.
,
2017
, “
Comparative Study of Trigger Configuration for Enhancement of Crashworthiness of Automobile Crash Box Subjected to Axial Impact Loading
,”
Proc. Eng.
,
173
, pp.
1390
1398
.10.1016/j.proeng.2016.12.198
2.
Yusof
,
N. S. B.
,
Sapuan
,
S. M.
,
Sultan
,
M. T. H.
,
Jawaid
,
M.
, and
Maleque
,
M. A.
,
2017
, “
Design and Materials Development of Automotive Crash Box: A Review
,”
Ciênc. Tecnol. Mater.
,
29
(
3
), pp.
129
144
10.1016/j.ctmat.2017.09.003.
3.
Yong
,
L.
, and
Hui
,
L.
,
2009
, “
The Analysis of the Aggressive Driving for the Traffic Safety
,”
International Conference on Industrial Mechatronics and Automation,
Chengdu, China, May 15–16, pp.
117
120
10.1109/ICIMA.2009.5156574.
4.
Marzbanrad
,
J.
,
Mehdikhanlo
,
M.
, and
Pour
,
A. S.
,
2009
, “
An Energy Absorption Comparison of Square, Circular, and Elliptic Steel and Aluminum Tubes Under Impact Loading
,”
Turk. J. Eng. Environ. Sci.
,
33
(
3
), pp.
159
166
10.3906/muh-0904-11.
5.
Abdullah
,
N. A. Z.
,
Sani
,
M. S. M.
,
Salwani
,
M. S.
, and
Husain
,
N. A.
,
2020
, “
A Review on Crashworthiness Studies of Crash Box Structure
,”
Thin-Walled Struct.
,
153
, p.
106795
.10.1016/j.tws.2020.106795
6.
Pettermann
,
H. E.
, and
Hüsing
,
J.
,
2012
, “
Modeling and Simulation of Relaxation in Viscoelastic Open Cell Materials and Structures
,”
Int. J. Solids Struct.
,
49
(
19–20
), pp.
2848
2853
.10.1016/j.ijsolstr.2012.04.027
7.
Benedetti
,
M.
,
Du Plessis
,
A.
,
Ritchie
,
R. O.
,
Dallago
,
M.
,
Razavi
,
S. M. J.
, and
Berto
,
F.
,
2021
, “
Architected Cellular Materials: A Review on Their Mechanical Properties Towards Fatigue-Tolerant Design and Fabrication
,”
Mater. Sci. Eng.: R: Rep.
,
144
, p.
100606
.10.1016/j.mser.2021.100606
8.
Yin
,
H.
,
Zhang
,
W.
,
Zhu
,
L.
,
Meng
,
F.
,
Liu
,
J.
, and
Wen
,
G.
,
2023
, “
Review on Lattice Structures for Energy Absorption Properties
,”
Compos. Struct.
,
304
, p.
116397
.10.1016/j.compstruct.2022.116397
9.
Helou
,
M.
, and
Kara
,
S.
,
2018
, “
Design, Analysis and Manufacturing of Lattice Structures: An Overview
,”
Int. J. Comput. Integr. Manuf.
,
31
(
3
), pp.
243
261
.10.1080/0951192X.2017.1407456
10.
Nakazawa
,
Y.
,
Tamura
,
K.
,
Yoshida
,
M.
,
Takagi
,
K.
, and
Kano
,
M.
,
2005
, “
Development of Crash-Box for Passenger Car With High Capability for Energy Absorption
,” VIII International Conference on Computation Plasticity (
COMPLAS VIII
) https://congress2.cimne.com/complas05/admin/Files/FilePaper/p167.pdf,
Barcelona
, Spain, Sept. 2–3, p.
167
.
11.
Kumar
,
M. V.
,
2017
, “
Design and Crash Analysis of Automotive Crush Box
,”
Int. J. Resent Technol. Mech. Electr. Eng.
,
4
(
7
), pp.
35
41
https://ijrmee.org/index.php/ijrmee/article/view/103.
12.
Li
,
Q. F.
,
Liu
,
Y. J.
,
Wang
,
H. D.
, and
Yan
,
S. Y.
,
2009
, “
Finite Element Analysis and Shape Optimization of Automotive Crash-Box Subjected to Low Velocity Impact
,”
International Conference on Measuring Technology and Mechatronics Automation
, Zhangjiajie, China, Apr. 11–12, pp.
791
794
10.1109/ICMTMA.2009.545.
13.
Tarlochan
,
F.
,
Samer
,
F.
,
Hamouda
,
A. M. S.
,
Ramesh
,
S.
, and
Khalid
,
K.
,
2013
, “
Design of Thin Wall Structures for Energy Absorption Applications: Enhancement of Crashworthiness Due to Axial and Oblique Impact Forces
,”
Thin-Walled Struct.
,
71
, pp.
7
17
.10.1016/j.tws.2013.04.003
14.
Devendra
,
K. C.
, and
Borse
,
P. N.
,
2020
, “
Analysis of Vehicle Crash Box for Improved Passengers Safety With Shape Optimization
,”
Int. J. Sci. Res. Dev.
, https://www.ijsrd.com/articles/IJSRDV8I70405.pdf8(
7
), pp.
700
702
.
15.
Ciampaglia
,
A.
,
Fiumarella
,
D.
,
Niutta
,
C. B.
,
Ciardiello
,
R.
, and
Belingardi
,
G.
,
2021
, “
Impact Response of an Origami-Shaped Composite Crash Box: Experimental Analysis and Numerical Optimization
,”
Compos. Struct.
,
256
, p.
113093
.10.1016/j.compstruct.2020.113093
16.
Baroutaji
,
A.
,
Sajjia
,
M.
, and
Olabi
,
A. G.
,
2017
, “
On the Crashworthiness Performance of Thin-Walled Energy Absorbers: Recent Advances and Future Developments
,”
Thin-Walled Struct.
,
118
, pp.
137
163
.10.1016/j.tws.2017.05.018
17.
Uma Devi
,
B.
,
Vamsi Krishna
,
C.
, and
Swaroop
,
M.
,
2014
, “
Design Simulation of Crash Box in Car
,”
IJERT
,
3
(
1
), pp.
978
982
https://www.ijert.org/research/designsimulation-of-crash-box-in-car-IJERTV3IS10431.pdf.
18.
Tao
,
W.
, and
Leu
,
M. C.
,
2016
, “
Design of Lattice Structure for Additive Manufacturing
,” International Symposium on Flexible Automation (
ISFA
), Cleveland, OH, Aug. 1–3, pp.
325
332
10.1109/ISFA.2016.7790182.
19.
Saleh
,
B.
,
Jiang
,
J.
,
Fathi
,
R.
,
Al-Hababi
,
T.
,
Xu
,
Q.
,
Wang
,
L.
,
Song
,
D.
, and
Ma
,
A.
,
2020
, “
30 Years of Functionally Graded Materials: An Overview of Manufacturing Methods, Applications and Future Challenges
,”
Composites, Part B
,
201
, p.
108376
.10.1016/j.compositesb.2020.108376
20.
Du Plessis
,
A.
,
Yadroitsava
,
I.
,
Yadroitsev
,
I.
,
Le Roux
,
S. G.
, and
Blaine
,
D. C.
,
2018
, “
Numerical Comparison of Lattice Unit Cell Designs for Medical Implants by Additive Manufacturing
,”
Virtual Phys. Prototyping
,
13
(
4
), pp.
266
281
.10.1080/17452759.2018.1491713
21.
Peng
,
C.
,
Tran
,
P.
,
Nguyen-Xuan
,
H.
, and
Ferreira
,
A. J. M.
,
2020
, “
Mechanical Performance and Fatigue Life Prediction of Lattice Structures: Parametric Computational Approach
,”
Compos. Struct.
,
235
, p.
111821
.10.1016/j.compstruct.2019.111821
22.
Simpson
,
J.
, and
Kazancı
,
Z.
,
2020
, “
Crushing Investigation of Crash Boxes Filled With Honeycomb and Re-Entrant (Auxetic) Lattices
,”
Thin-Walled Struct.
,
150
, p.
106676
.10.1016/j.tws.2020.106676
23.
Hou
,
W.
,
He
,
P.
,
Yang
,
Y.
, and
Sang
,
L.
,
2023
, “
Crashworthiness Optimization of Crash Box With 3D-Printed Lattice Structures
,”
Int. J. Mech. Sci.
,
247
, p.
108198
.10.1016/j.ijmecsci.2023.108198
24.
Alaimo
,
A.
,
Marino
,
F.
, and
Valvano
,
S.
,
2021
, “
BCC Lattice Cell Structural Characterization
,”
Rep. Mech. Eng.
,
2
(
1
), pp.
77
85
.10.31181/rme200102077v
25.
Balkumar
,
K.
,
Iyer
,
A. V.
,
Ramasubramanian
,
A.
,
Devarajan
,
K.
, and
Marimuthu
,
P. K.
,
2016
, “
Numerical Simulation of Low Velocity Impact Analysis of Fiber Metal Laminates
,”
Mech. Mech. Eng.
,
20
(
4
), pp.
515
530
https://www.researchgate.net/profile/Devarajan-Kaliyannan/publication/315643836_Numerical_Simulation_of_Low_Velocity_Impact_Analysis_of_Fiber_Metal_Laminates/links/629481f655273755ebc1f295/Numerical-Simulation-of-Low-Velocity-Impact-Analysis-of-Fiber-Metal-Laminates.pdf.
26.
Athira
,
V.
,
John
,
K.
, and
Leeladharan
,
N.
,
2018
, “
Outranking for Better Decision Making: A Case Study of Two-Wheeler Crashes in Cochin City
,” Int. J. Pure. App. Mat., 119(10), pp.
759
774
.
27.
Rohini
,
B.
,
Divya Madhuri
,
P.
,
Naresh Kumar
,
L. S.
,
Soorya
,
V.
, and
Mohankumar
,
N.
,
2020
, “
Technology Manoevering in Smart Vehicles for Safe Commute
,”
5th International Conference on Communication and Electronics Systems
(
ICCES
), Coimbatore, India, June 10–12, pp.
617
622
10.1109/ICCES48766.2020.9137877.
28.
Damahe
,
A. J.
,
Sumesh
,
C. S.
, and
Ramesh
,
A.
,
2024
, “
Empirical Relationship for Fracture Energy in Machining Processes: A FEM-Based Investigation With AISI 1045 Steel
,”
Int. J. Interact. Des. Manuf. (IJIDeM)
,
18
(
4
), pp.
2405
2413
.10.1007/s12008-023-01596-y
29.
Alwattar
,
T. A.
, and
Mian
,
A.
,
2019
, “
Development of an Elastic Material Model for BCC Lattice Cell Structures Using Finite Element Analysis and Neural Networks Approaches
,”
J. Compos. Sci.
,
3
(
2
), p.
33
.10.3390/jcs3020033
30.
Subramaniam
,
A.
,
Bhuvandev
,
V.
,
Cibhi
,
B.
,
Kishore
,
S.
, and
Bhowmik
,
S.
,
2023
, “
Novel Ultra-High Impact Strength Light Weight Transparent Polycarbonate Laminated Composite for Aviation and Defence
,”
J. Polym. Res.
,
30
(
11
), p.
413
.10.1007/s10965-023-03803-6
You do not currently have access to this content.