Abstract
This paper investigates the stability of a class of partially unmeasurable nonlinear impulsive switched dynamical systems on time scales. It provides sufficient conditions for ensuring exponential stability of impulsive switched systems in hybrid time domains using Gronwall's inequality, dimensionality reduction technique, and time scale theory. These conditions apply to systems where nonlinearities affect both continuous and discrete subsystems. Stable strategies involving partial unmeasurable states are obtained. Furthermore, the proposed results allow the switched system to have incomplete measurable states. The effectiveness of these results is demonstrated by several examples, which are accompanied by simulations for comparison.
Issue Section:
Research Papers
References
1.
Bohner
,
M.
, and
Peterson
,
A.
, 2003
, Advances in Dynamic Equations on Time Scales
,
Addison-Wesley
, Boston, MA
.2.
Taousser
,
F.
,
Defoort
,
M.
, and
Djemai
,
M.
, 2015
, “
Stability analysis of a class of uncertain switched systems on time scale using Lyapunov functions
,” Nonlinear Anal.: Hybrid Syste.
, 16, pp. 13
–23
.10.1016/j.nahs.2014.12.0013.
Pachpatte
,
D.
, 2019
, “
Properties of Certain Iterated Dynamic Integrodifferential Equation on Time Scales
,” Appl. Math. Comput.
,
346
, pp. 767
–775
.10.1016/j.amc.2018.10.0344.
Bohner
,
M.
, and
Peterson
,
A. S.
, 2001
, Dynamic Equations on Time Scales: An Introduction With Applications
,
Birkhauser
,
Boston, MA
.5.
Xiao
,
Q.
, and
Huang
,
Z.
, 2016
, “
Consensus of Multi-Agent System With Distributed Control on Time Scales
,” Appl. Math. Comput.
,
277
, pp. 54
–71
.10.1016/j.amc.2015.12.0286.
Lakshmikantham
,
V.
, and
Devi
,
J.
, 2006
, “
Hybrid Systems With Time Scales and Impulses
,” Nonlinear Anal.: Theory Methods Appl.
,
65
(11
), pp. 2147
–2152
.10.1016/j.na.2005.12.0437.
Huang
,
Z.
,
Cao
,
J.
,
Li
,
J.
, and
Bin
,
H.
, 2019
, “
Quasi-Synchronization of Neural Networks With Parameter Mismatches and Delayed Impulsive Controller on Time Scales
,” Nonlinear Anal.: Hybrid Syst.
,
33
, pp. 104
–115
.10.1016/j.nahs.2019.02.0058.
Zhang
,
X.
,
Lu
,
X.
, and
Liu
,
Z.
, 2019
, “
Razumikhin and Krasovskii Methods for Asymptotic Stability of Nonlinear Delay Impulsive Systems on Time Scales
,” Nonlinear Anal.: Hybrid Syst.
,
32
, pp. 1
–9
.10.1016/j.nahs.2018.10.0109.
Wan
,
P.
, and
Zeng
,
Z.
, 2022
, “
Global Exponential Stability of Impulsive Delayed Neural Networks on Time Scales Based on Convex Combination Method
,” IEEE Trans. Syst., Man, Cybern.: Syst.
,
52
(5
), pp. 3015
–3024
.10.1109/TSMC.2021.306197110.
Taousser
,
F.
,
Defoort
,
M.
, and
Djemai
,
M.
, 2014
, “
Stability Analysis of a Class of Switched Linear Systems on Non-Uniform Time Domains
,” Syst. Control Lett.
,
74
, pp. 24
–31
.10.1016/j.sysconle.2014.09.01211.
Kumar
,
V.
,
Djemai
,
M.
,
Defoort
,
M.
, and
Malik
,
M.
, 2021
, “
Finite-Time Stability and Stabilization Results for Switched Impulsive Dynamical Systems on Time Scales
,” J. Franklin Inst.
,
358
(1
), pp. 674
–698
.10.1016/j.jfranklin.2020.11.00112.
Yao
,
B.
, and
Li
,
X.
, 2006
, “
Output Feedback Adaptive Robust Control of Uncertain Linear Systems With Disturbances
,” ASME J. Dyn. Syst., Meas., Control
,
128
(4
), pp. 938
–945
.10.1115/1.236341313.
Zhang
,
G.
,
Chen
,
J.
, and
Lee
,
Z.
, 2010
, “
Adaptive Robust Control for Servo Mechanisms With Partially Unknown States Via Dynamic Surface Control Approach
,” IEEE Trans. Control Syst. Technol.
,
18
(3
), pp. 723
–731
.10.1109/TCST.2009.202526514.
Boutat
,
D.
, and
Zheng
,
G.
, 2021
, “
Extension to Nonlinear Partially Observable Dynamical Systems
,” Observer Design for Nonlinear Dynamical Systems
,
Springer
,
Cham, Switzerland
.15.
Rao
,
H.
,
Liu
,
F.
,
Peng
,
H.
,
Xu
,
Y.
, and
Lu
,
R.
, 2020
, “
Observer-Based Impulsive Synchronization for Neural Networks With Uncertain Exchanging Information
,” IEEE Trans. Neural Networks Learn. Syst.
,
31
(10
), pp. 3777
–3787
.10.1109/TNNLS.2019.294615116.
Li
,
M.
,
Chen
,
H.
, and
Li
,
X.
, 2021
, “
Exponential Stability of Nonlinear Systems Involving Partial Unmeasurable States Via Impulsive Control
,” Chaos, Solitons Fractals
,
142
, p. 110505
.10.1016/j.chaos.2020.11050517.
Du
,
N.
, and
Tien
,
L.
, 2007
, “
On the Exponential Stability of Dynamic Equations on Time Scales
,” J. Math. Anal. Appl.
,
331
(2
), pp. 1159
–1174
.10.1016/j.jmaa.2006.09.03318.
Taousser
,
F.
,
Defoort
,
M.
,
Djemai
,
M.
,
Djouadi
,
S.
, and
Tomsovic
,
K.
, 2019
, “
Stability Analysis of a Class of Switched Nonlinear Systems Using the Time Scale Theory
,” Nonlinear Anal.: Hybrid Syst.
,
33
, pp. 195
–210
.10.1016/j.nahs.2019.02.00619.
Liu
,
X.
, and
Chen
,
L.
, 2003
, “
Complex Dynamics of Holling Type ii Lotka-Volterra Predator-Prey System With Impulsive Perturbations on the Predator
,” Chaos, Solitons Fractals
,
16
(2
), pp. 311
–320
.10.1016/S0960-0779(02)00408-3Copyright © 2024 by ASME
You do not currently have access to this content.