The dynamics of a semi-infinite Euler–Bernoulli beam on unilateral elastic springs is investigated. The mechanical model is governed by a moving-boundary hyperbolic problem, which cannot be solved in closed form. Therefore, we look for approximated solutions following two different approaches. From the one side, approximate analytical solutions are obtained by means of perturbation techniques. On the other side, numerical solutions are determined by a self-made finite element algorithm. The analytical and numerical solutions are compared with each other, and the effects of the problem nonlinearity on the beam motion are analyzed. In particular, the superharmonics oscillations and the resonances are investigated in depth.
Issue Section:
Research Papers
1.
Tsai
, N. C.
, and Westmann
, R. E.
, 1967, “Beams of Tensionless Foundation
,” J. Engrg. Mech. Div.
0044-7951, 93
, pp. 1
–12
.2.
Ascione
, L.
, and Grimaldi
, A.
, 1984, “Unilateral Contact Between a Plate and an Elastic Foundation
,” Meccanica
0025-6455, 19
, pp. 223
–233
.3.
Zhang
, Y.
, and Murphy
, K. D.
, 2004, “Response of a Finite Beam in Contact with a Tensionless Foundation under Symmetric and Asymmetric Loading
,” Int. J. Solids Struct.
0020-7683, 41
(24–25
), pp. 6745
–6758
.4.
de Holanda
, A. S.
, and Gonçalves
, P. B.
, 2003, “Postbuckling Analysis of Plates Resting on a Tensionless Elastic Foundation
,” J. Eng. Mech.
0733-9399, 129
(4
), pp. 438
–448
.5.
Lin
, L.
, and Adams
, G. G.
, 1987, “Beam on Tensionless Elastic Foundation
,” J. Eng. Mech.
0733-9399, 113
, pp. 542
–553
.6.
Güler
, K.
, 2004, “Circular Elastic Plate Resting on Tensionless Pasternak Foundation
,” J. Eng. Mech.
0733-9399, 130
(10
), pp. 1251
–1254
.7.
Khathlan1
, A. A.
, 1994, “Large-Deformation Analysis of Plates on Unilateral Elastic Foundation
,” J. Eng. Mech.
0733-9399, 120
(8
), pp. 1820
–1827
.8.
Ioakimidis
, N. I.
, 1988, “Beams on Tensionless Elastic Foundation: Approximate Quantifier Elimination with Chebyshev Series
,” Int. J. Numer. Methods Eng.
0029-5981, 39
(4
), pp. 663
–686
.9.
Silva
, A. R. D.
, Silveira
, R. A. M.
, and Gonçalves
, P. B.
, 2001, “Numerical Methods for Analysis of Plates on Tensionless Elastic Foundations
,” Int. J. Solids Struct.
0020-7683, 38
, pp. 2083
–2100
.10.
Weitsman
, Y.
, 1970, “On Foundation that Reacts in Compression Only
,” ASME J. Appl. Mech.
0021-8936, 37
(4
), pp. 1019
–1030
.11.
Celep
, Z.
, Malaika
, A.
, and Abu-Hussein
, M.
, 1989, “Forced Vibrations of a Beam on a Tensionless Foundation
,” J. Sound Vib.
0022-460X, 128
(2
), pp. 235
–246
.12.
Choros
, J.
, and Adams
, G. G.
, 1979, “A Steadily Moving Load on an Elastic Beam Resting on a Tensionless Winkler Foundation
,” ASME J. Appl. Mech.
0021-8936, 46
(1
), pp. 175
–180
.13.
Cokşun
, I.
, 2003, “The Response of a Finite Beam on a Tensionless Pasternak Foundation Subjected to a Harmonic Load
,” Eur. J. Mech. A/Solids
0997-7538, 22
(1
), pp. 151
–161
.14.
Cokşun
, I.
, 2000, “Non-Linear Vibrations of a Beam Resting of a Tensionless Winkler Foundation
,” J. Sound Vib.
0022-460X, 236
(3
), pp. 401
–411
.15.
Celep
, Z.
, 1990, “In-Plane Vibrations of Circular Rings on a Tensionless Foundation
,” J. Sound Vib.
0022-460X, 143
(3
), pp. 461
–471
.16.
Nayfeh
, A. H.
, 1981, Introduction to Perturbation Methods
, Wiley
, New York.17.
Kevorkian
, J.
, and Cole
, J. D.
, 1981, Perturbation Methods in Applied Mathematics
, Springer
, Berlin.18.
Callegari
, M.
, Lancioni
, G.
, and Lenci
, S.
, 2005, “A Numerical Model for the Nonlinear Dynamics of a Semi-infinite Beam on Unilateral Winkler Soil
,” Proceedings AIMETA05
, Firenze, September 11–15 (CD-ROM).19.
Andersen
, L.
, Nielsen
, S. R. K.
, and Kirkegaard
, P. H.
, 2001, “Finite Element Modelling of Infinite Euler Beams on Kelvin Foundation Exposed to Moving Loads in Convected Coordinates
,” J. Sound Vib.
0022-460X, 241
(4
), pp. 587
–604
.20.
Liu
, T.
, and Li
, Q.
, 2003, “Transient Elastic Wave Propagation in an Infinite Timoshenko Beam on Viscoelastic Foundation
,” Int. J. Solids Struct.
0020-7683, 40
(2
), pp. 3211
–3228
.21.
Graff
, K. F.
, 1975, Wave Motion in Elastic Solids
, Oxford University Press
, London, UK.22.
Achenbach
, J. D.
, 1973, Wave Propagation in Elastic Solids
, North–Holland
, Amsterdam, The Netherlands.23.
McGhie
, R. D.
, 1990, “Flexural Wave Motion in Infinite Beam
,” J. Eng. Mech.
0733-9399, 116
(3
), pp. 531
–548
.24.
Hughes
, T. J. R.
, 1987, The Finite Element Method; Linear Static and Dynamic Finite Element Analysis
, Prentice–Hall
, Englewood Cliffs, N.J.25.
Callegari
, M.
, Carini
, C. B.
, Lenci
, S.
, Torselletti
, E.
, and Vitali
, L.
, 2003, “Dynamic Models of Marine Pipelines for Installation in Deep and Ultra-deep Waters: Analytical and Numerical Approaches
,” Proceedings AIMETA03
, Ferrara, Italy, September 9–12 (CD-ROM).26.
Lenci
, S.
, and Callegari
, M.
, 2005, “Simple Analytical Models for the J-lay Problem
,” Acta Mech.
0001-5970, 178
(1–2
), pp. 23
–39
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.