Abstract

This paper presents a comparative analysis on the space manipulator systems dynamics modeling approaches, namely, the standard approach (SA) and the dual quaternion based dynamics modeling approach. A detailed analysis supported by the results from numerical simulations, comparing the two approaches in terms of operational count and execution time, has been presented to determine which approach is computationally and temporally efficient.

References

1.
Hu
,
J.
, and
Wang
,
T.
,
2018
, “
Minimum Base Attitude Disturbance Planning for a Space Robot During Target Capture
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051002
.10.1115/1.4040435
2.
Zhao
,
C.
,
Wang
,
K.
,
Zhao
,
H.
,
Guo
,
H.
, and
Liu
,
R.
,
2022
, “
Kinematics, Dynamics, and Experiments of n(3RRlS) Reconfigurable Series–Parallel Manipulators for Capturing Space Noncooperative Targets
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060902
.10.1115/1.4054245
3.
Megalingam
,
R. K.
,
Tantravahi
,
S.
,
Tammana
,
H. S. S. K.
, and
Puram
,
H. S. R.
,
2023
, “
2D-3D Hybrid Mapping for Path Planning in Autonomous Robots
,”
Int. J. Intell. Rob. Appl.
,
7
(
2
), pp.
291
303
.10.1007/s41315-023-00272-4
4.
Carignan
,
C.
, and
Akin
,
D.
,
2000
, “
The Reaction Stabilization of On-Orbit Robots
,”
IEEE Control Syst. Mag.
,
20
(
6
), pp.
19
33
.10.1109/37.887446
5.
Deng
,
Y.
,
Qiao
,
B.
,
Qin
,
H.
, and
Wu
,
W.
,
2022
, “
Hybrid Dynamics Modeling and Motion Planning for Free-Floating Multi-Arm Space Robot
,” 2022 IEEE Fifth Advanced Information Management, Communicates, Electronic and Automation Control Conference (
IMCEC
), Vol. 5, Chongqing, China, Dec. 16–18, pp.
1655
1660
.10.1109/IMCEC55388.2022.10019833
6.
Rodrigues
,
G. S.
, and
Pazelli
,
T. F. P. A. T.
,
2021
, “
Dynamic Modeling and Control Optimization of Free-Floating Dual-Arm Space Robots in Task Space
,” 2021 Latin American Robotics Symposium (LARS), 2021 Brazilian Symposium on Robotics (SBR), and 2021 Workshop on Robotics in Education (
WRE
), Natal, Brazil, Oct. 11–15, pp.
168
173
.10.1109/LARS/SBR/WRE54079.2021.9605469
7.
Balderas Hill
,
R.
,
Briot
,
S.
,
Chriette
,
A.
, and
Martinet
,
P.
,
2022
, “
Performing Energy-Efficient Pick-and-Place Motions for High-Speed Robots by Using Variable Stiffness Springs
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051004
.10.1115/1.4053158
8.
Featherstone
,
R.
,
2008
,
Rigid Body Dynamics Algorithms
,
Springer
,
Berlin, Germany
.
9.
Jain
,
A.
,
1991
, “
Unified Formulation of Dynamics for Serial Rigid Multibody Systems
,”
J. Guid., Control, Dyn.
,
14
(
3
), pp.
531
542
.10.2514/3.20672
10.
Craig
,
J. J.
,
2006
,
Introduction to Robotics: Mechanics and Control
,
Pearson Education
, London, UK.
11.
Rodriguez
,
G.
,
Jain
,
A.
, and
Kreutz-Delgado
,
K.
,
1991
, “
A Spatial Operator Algebra for Manipulator Modeling and Control
,”
Int. J. Rob. Res.
,
10
(
4
), pp.
371
381
.10.1177/027836499101000406
12.
Xinfeng
,
G.
, and
Jingtao
,
J.
,
2010
, “
Dynamics Analyze of a Dual-Arm Space Robot System Based on Kane's Method
,”
Second International Conference on Industrial Mechatronics and Automation
, Vol. 2, Wuhan, China, May 30–31, pp.
646
649
.10.1109/ICINDMA.2010.5538223
13.
Dubowsky
,
S.
, and
Papadopoulos
,
E.
,
1993
, “
The Kinematics, Dynamics, and Control of Free-Flying and Free-Floating Space Robotic Systems
,”
IEEE Trans. Rob. Autom.
,
9
(
5
), pp.
531
543
.10.1109/70.258046
14.
Vafa
,
Z.
, and
Dubowsky
,
S.
,
1990
, “
The Kinematics and Dynamics of Space Manipulators: The Virtual Manipulator Approach
,”
Int. J. Rob. Res.
,
9
(
4
), pp.
3
21
.10.1177/027836499000900401
15.
Valverde
,
A.
, and
Tsiotras
,
P.
,
2018
, “
Spacecraft Robot Kinematics Using Dual Quaternions
,”
Robotics
,
7
(
4
), p.
64
.10.3390/robotics7040064
16.
Valverde
,
A.
, and
Tsiotras
,
P.
,
2018
, “
Dual Quaternion Framework for Modeling of Spacecraft-Mounted Multibody Robotic Systems
,”
Front. Rob. AI
,
5
, pp.
1
17
.10.3389/frobt.2018.00128
17.
Valverde
,
A.
, and
Tsiotras
,
P.
,
2018
, “
Modeling of Spacecraft-Mounted Robot Dynamics and Control Using Dual Quaternions
,” 2018 Annual American Control Conference (
ACC
), Milwaukee, WI, June 27–29, pp.
670
675
.10.23919/ACC.2018.8431054
18.
Cohen
,
A.
,
Taub
,
B.
, and
Shoham
,
M.
,
2024
, “
Dual Quaternions Representation of Lagrange's Dynamic Equations
,”
ASME J. Mech. Rob.
,
16
(
4
), p.
041004
.10.1115/1.4062463
19.
Kozlowski
,
K.
,
1995
, “
Standard and Diagonalized Lagrangian Dynamics: A Comparison
,”
Proceedings of 1995 IEEE International Conference on Robotics and Automation
, Vol. 3, Nagoya, Japan, May 21–27, pp.
2823
2828
.10.1109/ROBOT.1995.525683
20.
Walker
,
M. W.
, and
Orin
,
D. E.
,
1982
, “
Efficient Dynamic Computer Simulation of Robotic Mechanisms
,”
ASME J. Dyn. Syst., Meas., Control
,
104
(
3
), pp.
205
211
.10.1115/1.3139699
21.
Luh
,
J. Y. S.
,
Walker
,
M. W.
, and
Paul
,
R. P. C.
,
1980
, “
On-Line Computational Scheme for Mechanical Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
102
(
2
), pp.
69
76
.10.1115/1.3149599
22.
Papadopoulos
,
E.
,
Aghili
,
F.
,
Ma
,
O.
, and
Lampariello
,
R.
,
2021
, “
Robotic Manipulation and Capture in Space: A Survey
,”
Front. Rob. AI
,
8
, pp.
1
36
.10.3389/frobt.2021.686723
23.
The MathWorks, Inc.
,
2023
, “
MATLAB Version: 23.2.0.2599560 (R2023b)
,” The MathWorks, Natick, MA, accessed Oct. 23, 2024, https://www.mathworks.com
24.
MathWorks, 2024, “Compare Solvers,” The MathWorks, Natick, MA, accessed Oct. 23, 2024, https://kr.mathworks.com/help/simulink/ug/compare-solvers.html
25.
MathWorks, 2024, “ode113,” The MathWorks, Natick, MA, accessed Oct. 23, 2024, https://kr.mathworks.com/help/matlab/ref/ode113.html
You do not currently have access to this content.