From the viewpoint of nonlinear dynamics, the stability and bifurcation of the rotor dynamical system supported in gas bearings are investigated. First, the dynamical model of gas bearing-Jeffcott rotor system is given, and the finite element method is used to approach the unsteady Reynolds equation in order to obtain gas film forces. Then, the method for stability analysis of the unbalance response of the rotor system is developed in combination with the Newmark-based direct integral method and Floquet theory. Finally, a numerical example is presented, and the complex behaviors of the nonlinear dynamical system are simulated numerically, including the trajectory of the journal and phase portrait. In particular, the stabilities of the system’s equilibrium position and unbalance responses are studied via the orbit diagram, phase space, Poincaré mapping, bifurcation diagram, and power spectrum. The results show that the numerical method for solving the unsteady Reynolds equation is efficient, and there exist a rich variety of nonlinear phenomena in the system. The half-speed whirl encountered in practice is the result from Hopf bifurcation of equilibrium, and the numerical method presented is available for the stability and bifurcation analysis of the complicated gas film-rotor dynamic system.

1.
Zhang
,
J. Z.
,
Xu
,
Q. Y.
, and
Zheng
,
T. S.
, 1998, “
Stability and Bifurcation of a Rotor-Fluid Film Bearing System With Squeeze Film Damper
,”
ASME J. Vibr. Acoust.
0739-3717,
120
, pp.
1003
1006
.
2.
Hollis
,
P.
, and
Taylor
,
D. L.
, 1986, “
Hopf Bifurcation to Limit Cycles in Fluid Film Bearings
,”
ASME J. Tribol.
0742-4787,
108
, pp.
184
189
.
3.
Lund
,
J. W.
, 1987, “
Review of the Concept of Dynamic Coefficients for Fluid Film Journal Bearings
,”
ASME J. Tribol.
0742-4787,
109
, pp.
37
41
.
4.
Wang
,
J. K.
, and
Khonsari
,
M. M.
, 2006, “
Bifurcation Analysis of a Flexible Rotor Supported by Two Fluid-Film Journal Bearings
,”
ASME J. Tribol.
0742-4787,
128
, pp.
594
603
.
5.
Zhang
,
J. Z.
, 2001, “
Calculation and Bifurcation of Fluid Film With Cavitation Based on Variational Inequality
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
11
, pp.
43
55
.
6.
Ausman
,
J. S.
, 1963, “
Linearized ph Stability Theory for Translatory Half-Speed Whirl of Long, Self-Acting Gas-Lubricated Journal Bearings
,”
ASME J. Basic Eng.
0021-9223,
85
(
4
), pp.
611
619
.
7.
Sternlicht
,
B.
, 1959, “
Elastic and Damping Properties of Cylindrical Journal Bearings
,”
ASME J. Basic Eng.
0021-9223,
81
, pp.
101
108
.
8.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
, 1983, “
Analysis of Gas-Lubricated Foil Journal Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
105
, pp.
647
655
.
9.
Lund
,
J. W.
, 1968, “
Calculation of Stiffness and Damping Properties of Gas Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
90
,
793
803
.
10.
Lund
,
J. W.
, 1976, “
Linear Transient Response of a Flexible Rotor Supported in Gas-Lubricated Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
98
(
1
), pp.
57
65
.
11.
Lund
,
J. W.
, 1967, “
A Theoretical Analysis of Whirl Instability and Pneumatic Hammer for a Rigid Rotor in Pressurized Gas Journal Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
89
(
2
), pp.
154
163
.
12.
Czolczynski
,
K.
, 1996, “
Stability of Symmetrical Rotor Supported in Flexibly Mounted, Self-Acting Gas Journal Bearings
,”
Wear
0043-1648,
194
, pp.
190
197
.
13.
Czolczynski
,
K.
, and
Kapitaniak
,
T.
, 1997, “
Hopf Bifurcation in Rotors Supported in Gas Bearings
,”
Chaos, Solitons Fractals
0960-0779,
8
(
4
), pp.
499
515
.
14.
Adiletta
,
G.
,
Guido
,
A. R.
, and
Rossi
,
C.
, 1997, “
Nonlinear Dynamics of a Rigid Unbalanced Rotor in Short Bearings. Part I: Theoretical Analysis
,”
Nonlinear Dyn.
0924-090X,
14
, pp.
57
87
.
15.
Adiletta
,
G.
,
Guido
,
A. R.
, and
Rossi
,
C.
, 1997, “
Nonlinear Dynamics of a Rigid Unbalanced Rotor in Short Bearings. Part II: Experimental Analysis
,”
Nonlinear Dyn.
0924-090X,
14
, pp.
157
189
.
16.
Wang
,
C. C.
, and
Chen
,
C. K.
, 2001, “
Bifurcation Analysis of Self-Acting Gas Journal Bearings
,”
ASME J. Tribol.
0742-4787,
123
(
44
), pp.
755
767
.
17.
Wang
,
C. C.
,
Jang
,
M. J.
, and
Yeh
,
Y. L.
, 2007, “
Bifurcation and Nonlinear Dynamic Analysis of a Flexible Rotor Supported by Relative Short Gas Journal Bearings
,”
Chaos, Solitons Fractals
0960-0779,
32
(
2
), pp.
566
582
.
18.
Belforte
,
G.
,
Raparelli
,
T.
, and
Viktorov
,
V.
, 1999, “
Theoretical Investigations of Fluid Inertia Effects and Stability of Self-Acting Gas Journal Bearings
,”
ASME J. Tribol.
0742-4787,
121
(
4
), pp.
836
843
.
19.
Iooss
,
G.
, and
Joseph
,
D. D.
, 1989,
Elementary Stability and Bifurcation Theory
,
Springer-Verlag
,
New York
.
20.
Parker
,
T. S.
, 1989,
Practical Numerical Algorithms for Chaotic Systems
,
Springer-Verlag
,
New York
.
21.
Zhang
,
J. Z.
,
Xu
,
Q. Y.
, and
Zheng
,
T. S.
, 1998, “
A Method for Determining the Periodic Solution and Its Stability of a Dynamic System With Local Nonlinearities
,”
Acta Mech. Sin.
0459-1879,
30
(
5
), pp.
572
579
.
You do not currently have access to this content.