The local stability and existence of periodic motions in a periodically forced oscillator with multiple discontinuities are investigated. The complexity of periodic motions and chaos in such a discontinuous system is often caused by the passability, sliding, and grazing of flows to discontinuous boundaries. Therefore, the corresponding analytical conditions for such singular phenomena to discontinuous boundary are presented from the local singularity theory of discontinuous systems. To develop the mapping structures of periodic motions, basic mappings are introduced, and the sliding motion on the discontinuous boundary is described by a sliding mapping. A generalized mapping structure is presented for all possible periodic motions, and the local stability and bifurcations of periodic motions are discussed. From mapping structures, the switching points of periodic motions on the boundaries are predicted analytically. Two periodic motions are presented for illustrations of the passability, sliding, and grazing of periodic motions on the boundary.

1.
Den Hartog
,
J. P.
, 1931, “
Forced Vibrations With Coulomb and Viscous Damping
,”
Trans. ASME
0097-6822,
53
, pp.
107
115
.
2.
Den Hartog
,
J. P. D.
, and
Mikina
,
S. J.
, 1932, “
Forced Vibrations With Non-Linear Spring Constants
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
157
164
.
3.
Levinson
,
N.
, 1949, “
A Second Order Differential Equation With Singular Solutions
,”
Ann. Math.
0003-486X,
50
, pp.
127
153
.
4.
Filippov
,
A. F.
, 1964, “
Differential Equations With Discontinuous Right-Hand Side
,”
Am. Math. Soc. Transl.
0065-9290,
42
, pp.
199
231
.
5.
Shaw
,
S. W.
, and
Holmes
,
P. J.
, 1983, “
A Periodically Forced Piecewise Linear Oscillator
,”
J. Sound Vib.
0022-460X,
90
(
1
), pp.
121
155
.
6.
Wong
,
C. W.
,
Zhang
,
W. S.
, and
Lau
,
S. L.
, 1991, “
Periodic Forced Vibration of Unsymmetrical Piecewise Linear Systems by Incremental Harmonic Balance Method
,”
J. Sound Vib.
0022-460X,
149
, pp.
91
105
.
7.
Kim
,
Y. B.
, and
Noah
,
S. T.
, 1991, “
Stability and Bifurcation Analysis of Oscillators With Piecewise-Linear Characteristics: A General Approach
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
545
553
.
8.
Leine
,
R. I.
, and
Van Campen
,
D. H.
, 2000, “
Bifurcations in Nonlinear Discontinuous Systems
,”
Nonlinear Dyn.
0924-090X,
23
, pp.
105
164
.
9.
Leine
,
R. I.
, and
Van Campen
,
D. H.
, 2002, “
Discontinuous Bifurcations of Periodic Motions
,”
Math. Comput. Modell.
0895-7177,
36
, pp.
389
403
.
10.
Luo
,
A. C. J.
, and
Menon
,
S.
, 2004, “
Global Chaos in a Periodically Forced, Linear System With a Dead-Zone Restoring Force
,”
Chaos, Solitons Fractals
0960-0779,
19
, pp.
1189
1199
.
11.
Luo
,
A. C. J.
, and
Chen
,
L.
, 2004, “
Existence, Stability and Bifurcation of Periodic Motions in a Periodically Forced, Piecewise Linear Oscillator With Impacts
,”
ASME 2004 International Mechanical Engineering Congress and Exposition
, Anaheim, CA, Nov. 13–29, IMECE2004-59821, DE
117
, pp.
439
447
.
12.
Feeny
,
B. F.
, and
Moon
,
F. C.
, 1994, “
Chaos In a Forced Dry-Friction Oscillator: Experiments and Numerical Modeling
,”
J. Sound Vib.
0022-460X,
170
, pp.
303
323
.
13.
Hinrichs
,
N.
,
Oestreich
,
M.
, and
Popp
,
K.
, 1997, “
Dynamics of Oscillators With Impact and Friction
,”
Chaos, Solitons Fractals
0960-0779,
8
(
4
), pp.
535
558
.
14.
Natsiavas
,
S.
, 1998, “
Stability of Piecewise Linear Oscillator With Viscous and Dry Friction Damping
,”
J. Sound Vib.
0022-460X,
217
, pp.
507
522
.
15.
Ko
,
P. L.
,
Taponat
,
M. C.
, and
Pfaifer
,
R.
, 2001, “
Friction-Induced Vibration—With and Without External Disturbance
,”
Tribol. Int.
0301-679X,
34
, pp.
7
24
.
16.
Li
,
Y.
, and
Feng
,
Z. C.
, 2004, “
Bifurcation and Chaos in Friction-Induced Vibration
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
9
, pp.
633
647
.
17.
Nordmark
,
A. B.
, 1991, “
Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
0022-460X,
145
, pp.
279
297
.
18.
Dankowicz
,
H.
, and
Nordmark
,
A. B.
, 2000, “
On the Origin and Bifurcations of Stick-Slip Oscillations
,”
Physica D
0167-2789,
160
, pp.
222
254
.
19.
di Bernardo
,
M.
,
Kowalczyk
,
P.
, and
Nordmark
,
A. B.
, 2002, “
Bifurcation of Dynamical Systems With Sliding: Derivation of Normal Form Mappings
,”
Physica D
0167-2789,
170
, pp.
175
205
.
20.
Thota
,
P.
, and
Dankowicz
,
H.
, 2006, “
Continuous and Discontinuous Grazing Bifurcations in Impacting Oscillators
,”
Physica D
0167-2789,
214
, pp.
187
197
.
21.
Thota
,
P.
, and
Dankowicz
,
H.
, 2006, “
Analysis of Grazing Bifurcations of Quasi-Periodic System Attractors
,”
Physica D
0167-2789,
220
, pp.
163
174
.
22.
Luo
,
A. C. J.
, 2005, “
A Theory for Non-Smooth Dynamical Systems on Connectable Domains
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
10
, pp.
1
55
.
23.
Luo
,
A. C. J.
, 2006,
Singularity and Dynamics on Discontinuous Vector Fields
,
Elsevier
,
Amsterdam
.
24.
Luo
,
A. C. J.
, and
Gegg
,
B. C.
, 2005, “
Force Product Criteria of Sliding Motions in a Forced Linear Oscillator Including Dry Friction
,”
Proc. Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf.
, Long Beach, CA, Sep. 24–28, DETC2005-84147,
1B
, pp.
897
906
.
25.
Luo
,
A. C. J.
, and
Gegg
,
B. C.
, 2006, “
Stick and Non-Stick Periodic Motions in a Periodically Forced, Linear Oscillator With Dry Friction
,”
J. Sound Vib.
0022-460X,
291
, pp.
132
168
.
26.
Luo
,
A. C. J.
, and
Gegg
,
B. C.
, 2006, “
Grazing Phenomena in a Periodically Forced, Linear Oscillator With Dry Friction
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
11
(
7
), pp.
777
802
.
27.
Luo
,
A. C. J.
, and
Gegg
,
B. C.
, 2007, “
Analytical Prediction of Sliding Motions Along Discontinuous Boundary in Non-Smooth Dynamical Systems
,”
Nonlinear Dyn.
0924-090X,
49
, pp.
401
424
.
You do not currently have access to this content.