Skip Nav Destination
Issues
April 2009
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Research Papers
An Exact Fourier Series Method for the Vibration Analysis of Multispan Beam Systems
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021001.
doi: https://doi.org/10.1115/1.3079681
Topics:
Boundary-value problems
,
Displacement
,
Fourier series
,
Springs
,
Vibration
,
Vibration analysis
,
Stiffness
,
Polynomials
Coupled Deformation Modes in the Large Deformation Finite Element Analysis: Generalization
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021002.
doi: https://doi.org/10.1115/1.3079682
Topics:
Continuum mechanics
,
Deformation
,
Finite element analysis
,
Shapes
Stability and Stationary Response of a Skew Jeffcott Rotor With Geometric Uncertainty
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021003.
doi: https://doi.org/10.1115/1.3079683
Topics:
Equations of motion
,
Excitation
,
Rotation
,
Rotors
,
Stability
,
Uncertainty
,
Machinery
,
Geometry
,
Disks
,
Steady state
An Efficient Multibody Divide and Conquer Algorithm and Implementation
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021004.
doi: https://doi.org/10.1115/1.3079823
Topics:
Algorithms
,
Chain
On the Formal Equivalence of Normal Form Theory and the Method of Multiple Time Scales
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021005.
doi: https://doi.org/10.1115/1.3079824
A Detailed Comparison of the Absolute Nodal Coordinate and the Floating Frame of Reference Formulation in Deformable Multibody Systems
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021006.
doi: https://doi.org/10.1115/1.3079825
Topics:
Deformation
,
Finite element analysis
,
Pendulums
,
Multibody systems
,
Cantilever beams
,
Deflection
,
Stress
Scaling of Constraints and Augmented Lagrangian Formulations in Multibody Dynamics Simulations
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021007.
doi: https://doi.org/10.1115/1.3079826
A Discussion of Low-Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021008.
doi: https://doi.org/10.1115/1.3079784
Topics:
Algorithms
,
Equations of motion
,
Kinematics
,
Multibody dynamics
,
Preservation
,
Simulation
,
Errors
,
Damping
,
Numerical analysis
An Efficient Hybrid Method for Multibody Dynamics Simulation Based on Absolute Nodal Coordinate Formulation
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021009.
doi: https://doi.org/10.1115/1.3079783
Topics:
Equations of motion
,
Hamilton's principle
,
Multibody dynamics
,
Simulation
,
Multibody systems
,
Dynamics (Mechanics)
,
Pendulums
,
Displacement
,
Stability
,
Errors
Exploration of New Concepts for Mass Detection in Electrostatically-Actuated Structures Based on Nonlinear Phenomena
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021010.
doi: https://doi.org/10.1115/1.3079785
Topics:
Microbeams
,
Resonance
,
Sensors
,
Switches
,
Cantilevers
,
Frequency response
,
Cantilever beams
,
Excitation
Topology Optimization of Large Motion Rigid Body Mechanisms With Nonlinear Kinematics
J. Comput. Nonlinear Dynam. April 2009, 4(2): 021011.
doi: https://doi.org/10.1115/1.3079786
Topics:
Kinematics
,
Optimization
,
Topology
,
Design
,
Genetic algorithms
Email alerts
RSS Feeds
Free wave propagation in pretensioned 2D textile metamaterials
J. Comput. Nonlinear Dynam
Reduced-Order Modeling and Optimization of a Flapping-Wing Flight System
J. Comput. Nonlinear Dynam
Numerical Simulation Method for the Rain-Wind Induced Vibration of the Three-Dimensional Flexible Stay Cable
J. Comput. Nonlinear Dynam (March 2025)
Complex Modal Synthesis Method for Viscoelastic Flexible Multibody System Described by ANCF
J. Comput. Nonlinear Dynam (March 2025)
Modal Analysis for Localization in Multiple Nonlinear Tuned Mass Dampers Installed on a Structure
J. Comput. Nonlinear Dynam