Skip Nav Destination
Issues
July 2009
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Research Papers
Observer Design for Nonlinear Systems With Time-Periodic Coefficients via Normal Form Theory
J. Comput. Nonlinear Dynam. July 2009, 4(3): 031001.
doi: https://doi.org/10.1115/1.3124093
Topics:
Design
,
Computation
,
Dynamics (Mechanics)
,
Errors
,
Design methodology
Direct Linearization of Continuous and Hybrid Dynamical Systems
J. Comput. Nonlinear Dynam. July 2009, 4(3): 031002.
doi: https://doi.org/10.1115/1.3124092
Analysis of Milling Stability by the Chebyshev Collocation Method: Algorithm and Optimal Stable Immersion Levels
J. Comput. Nonlinear Dynam. July 2009, 4(3): 031003.
doi: https://doi.org/10.1115/1.3124088
Active Vibration Control for a Machine Tool With Parallel Kinematics and Adaptronic Actuator
J. Comput. Nonlinear Dynam. July 2009, 4(3): 031004.
doi: https://doi.org/10.1115/1.3124089
Topics:
Actuators
,
Machine tools
,
Vibration control
,
Control equipment
,
Kinematics
,
Design
,
Gain scheduling
,
Optimal control
,
Position control
,
Simulation results
On an Active Control for a Structurally Nonlinear Mechanical System, Taking Into Account an Energy Pumping
J. Comput. Nonlinear Dynam. July 2009, 4(3): 031005.
doi: https://doi.org/10.1115/1.3124090
Topics:
Design
,
Feedback
,
Nonlinear systems
,
Oscillations
,
Vibration
,
Harmonic oscillators
,
Computer simulation
,
Damping
,
Displacement
,
Flow (Dynamics)
An Eigenvalue Problem for the Analysis of Variable Topology Mechanical Systems
J. Comput. Nonlinear Dynam. July 2009, 4(3): 031006.
doi: https://doi.org/10.1115/1.3124784
Topics:
Eigenvalues
,
Topology
,
Dynamics (Mechanics)
Experiments on Quasiperiodic Wheel Shimmy
J. Comput. Nonlinear Dynam. July 2009, 4(3): 031007.
doi: https://doi.org/10.1115/1.3124786
Topics:
Oscillations
,
Stability
,
Tires
,
Vibration
,
Wheels
,
Delays
,
Oscillating frequencies
,
Signals
,
Vehicle dynamics
Parameter Analysis and Normalization for the Dynamics and Design of Multibody Systems
J. Comput. Nonlinear Dynam. July 2009, 4(3): 031008.
doi: https://doi.org/10.1115/1.3124785
A Large Deformation Planar Finite Element for Pipes Conveying Fluid Based on the Absolute Nodal Coordinate Formulation
J. Comput. Nonlinear Dynam. July 2009, 4(3): 031009.
doi: https://doi.org/10.1115/1.3124091
Topics:
Finite element analysis
,
Fluids
,
Pipes
,
Deformation
A Gauge-Invariant Formulation for Constrained Mechanical Systems Using Square-Root Factorization and Unitary Transformation
J. Comput. Nonlinear Dynam. July 2009, 4(3): 031010.
doi: https://doi.org/10.1115/1.3124094
Topics:
Dynamics (Mechanics)
,
Equations of motion
,
Force control
,
Gages
,
Manipulators
,
Motion control
,
Robots
,
Inertia (Mechanics)
,
Kinetic energy
,
Tracking control
Technical Briefs
Nonsmooth Dynamics by Path Integration: An Example of Stochastic and Chaotic Response of a Meshing Gear Pair
J. Comput. Nonlinear Dynam. July 2009, 4(3): 034501.
doi: https://doi.org/10.1115/1.3124780
Topics:
Gears
,
Non-smooth dynamics
,
Probability
,
Density
,
Noise (Sound)
,
Differential equations
,
Dynamics (Mechanics)
,
Attractors
Transient Response of Circular, Elastic Plates to Point Loads
J. Comput. Nonlinear Dynam. July 2009, 4(3): 034502.
doi: https://doi.org/10.1115/1.3124782
Topics:
Deflection
,
Stress
,
Waves
,
Transients (Dynamics)
,
Plates (structures)
,
Deformation
,
Elastic waves
,
Elastic plates
,
Shear (Mechanics)
On Lugre Friction Model to Mitigate Nonideal Vibrations
Jorge Luis Palacios Felix, José Manoel Balthazar, Reyolando M. L. R. F. Brasil, Bento Rodrigues Pontes, Jr.
J. Comput. Nonlinear Dynam. July 2009, 4(3): 034503.
doi: https://doi.org/10.1115/1.3124783
Email alerts
RSS Feeds
Sobolev-Type Nonlinear Hilfer Fractional Differential Equations With Control: Approximate Controllability Exploration
J. Comput. Nonlinear Dynam (November 2024)
Application of Laminate Theory to Plate Elements Based on Absolute Nodal Coordinate Formulation
J. Comput. Nonlinear Dynam (November 2024)
Nonlinear Dynamics of a Magnetic Shape Memory Alloy Oscillator
J. Comput. Nonlinear Dynam