Abstract

In current supply chain operations, original equipment manufacturers (OEMs) procure parts from hundreds of globally distributed suppliers, which are often small- and medium-scale enterprises (SMEs). The SMEs also obtain parts from many other dispersed suppliers, some of whom act as sole sources of critical parts, leading to the creation of complex supply chain networks. These characteristics necessitate having a high degree of visibility into the flow of parts through the networks to facilitate decision making for OEMs and SMEs, alike. However, such visibility is typically restricted in real-world operations due to limited information exchange among the buyers and suppliers. Therefore, we need an alternate mechanism to acquire this kind of visibility, particularly for critical prediction problems, such as purchase orders deliveries and sales orders fulfillments, together referred as work orders completion times. In this paper, we present one such surrogate mechanism in the form of supervised learning, where ensembles of decision trees are trained on historical transactional data. Furthermore, since many of the predictors are categorical variables, we apply a dimension reduction method to identify the most influential category levels. Results on real-world supply chain data show effective performance with substantially lower prediction errors than the original completion time estimates. In addition, we develop a web-based visibility tool to facilitate the real-time use of the prediction models. We also conduct a structured usability test to customize the tool interface. The testing results provide multiple helpful suggestions on enhancing the ease-of-use of the tool.

References

References
1.
Banerjee
,
A. G.
,
Yund
,
W.
,
Yang
,
D.
,
Koudal
,
P.
,
Carbone
,
J.
, and
Salvo
,
J.
,
2015
, “
A Hybrid Statistical Method for Accurate Prediction of Supplier Delivery Times of Aircraft Engine Parts
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Paper No. V01BT02A037
.
2.
Sra
,
S.
, and
Dhillon
,
I. S.
,
2006
, “
Generalized Nonnegative Matrix Approximations With Bregman Divergences
,”
Advances in Neural Information Processing Systems
,
Vancouver, BC, Canada
,
Dec. 4–7
, pp.
283
290
.
3.
Gunasekaran
,
A.
,
Patel
,
C.
, and
McGaughey
,
R. E.
,
2004
, “
A Framework for Supply Chain Performance Measurement
,”
Int. J. Prod. Econ.
,
87
(
3
), pp.
333
347
. 10.1016/j.ijpe.2003.08.003
4.
Perea-Lopez
,
E.
,
Ydstie
,
B. E.
, and
Grossmann
,
I. E.
,
2003
, “
A Model Predictive Control Strategy for Supply Chain Optimization
,”
Comput. Chem. Eng.
,
27
(
8–9
), pp.
1201
1218
. 10.1016/S0098-1354(03)00047-4
5.
Shafiee
,
M.
,
2017
, “
Supply Chain Performance Evaluation With Rough Two-Stage Data Envelopment Analysis Model: Noncooperative Stackelberg Game Approach
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
4
), p.
041002
. 10.1115/1.4036487
6.
Yazdizadeh
,
P.
, and
Ameri
,
F.
,
2015
, “
A Text Mining Technique for Manufacturing Supplier Classification
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
,
Paper No. V01BT02A036
.
7.
Sabbagh
,
R.
,
Ameri
,
F.
, and
Yoder
,
R.
,
2018
, “
Thesaurus-Guided Text Analytics Technique for Capability-Based Classification of Manufacturing Suppliers
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
3
), p.
031009
. 10.1115/1.4039553
8.
Sabbagh
,
R.
, and
Ameri
,
F.
,
2020
, “
A Framework Based on k-Means Clustering and Topic Modeling for Analyzing Unstructured Manufacturing Capability Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011005
. 10.1115/1.4044506
9.
Ameri
,
F.
, and
Dutta
,
D.
,
2008
, “
A Matchmaking Methodology for Supply Chain Deployment in Distributed Manufacturing Environments
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
1
), p.
011002
. 10.1115/1.2830849
10.
Zhao
,
X.
,
Xie
,
J.
, and
Lau
,
R.
,
2001
, “
Improving the Supply Chain Performance: Use of Forecasting Models Versus Early Order Commitments
,”
Int. J. Prod. Res.
,
39
(
17
), pp.
3923
3939
. 10.1080/00207540110072236
11.
Zhao
,
X.
,
Xie
,
J.
, and
Leung
,
J.
,
2002
, “
The Impact of Forecasting Model Selection on the Value of Information Sharing in a Supply Chain
,”
Eur. J. Oper. Res.
,
142
(
2
), pp.
321
344
. 10.1016/S0377-2217(01)00300-9
12.
Radke
,
A. M.
, and
Tseng
,
M. M.
,
2015
, “
Design Considerations for Building Distributed Supply Chain Management Systems Based on Cloud Computing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
040906
. 10.1115/1.4030736
13.
Chen
,
F.
,
Drezner
,
Z.
,
Ryan
,
J. K.
, and
Simchi-Levi
,
D.
,
2000
, “
Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information
,”
Manage. Sci.
,
46
(
3
), pp.
436
443
. 10.1287/mnsc.46.3.436.12069
14.
Chandra
,
C.
, and
Grabis
,
J.
,
2005
, “
Application of Multi-Steps Forecasting for Restraining the Bullwhip Effect and Improving Inventory Performance Under Autoregressive Demand
,”
Eur. J. Oper. Res.
,
166
(
2
), pp.
337
350
. 10.1016/j.ejor.2004.02.012
15.
Aburto
,
L.
, and
Weber
,
R.
,
2007
, “
Improved Supply Chain Management Based on Hybrid Demand Forecasts
,”
Appl. Soft Comput.
,
7
(
1
), pp.
136
144
. 10.1016/j.asoc.2005.06.001
16.
Carbonneau
,
R.
,
Laframboise
,
K.
, and
Vahidov
,
R.
,
2008
, “
Application of Machine Learning Techniques for Supply Chain Demand Forecasting
,”
Eur. J. Oper. Res.
,
184
(
3
), pp.
1140
1154
. 10.1016/j.ejor.2006.12.004
17.
Zamar
,
D. S.
,
Gopaluni
,
B.
,
Sokhansanj
,
S.
, and
Newlands
,
N. K.
,
2017
, “
A Quantile-Based Scenario Analysis Approach to Biomass Supply Chain Optimization Under Uncertainty
,”
Comput. Chem. Eng.
,
97
, pp.
114
123
. 10.1016/j.compchemeng.2016.11.015
18.
Nakano
,
M.
,
2009
, “
Collaborative Forecasting and Planning in Supply Chains: The Impact on Performance in Japanese Manufacturers
,”
Int. J. Phys. Distrib. Logist. Manage.
,
39
(
2
), pp.
84
105
. 10.1108/09600030910942377
19.
Ramanathan
,
U.
, and
Gunasekaran
,
A.
,
2014
, “
Supply Chain Collaboration: Impact of Success in Long-Term Partnerships
,”
Int. J. Prod. Econ.
,
147
(
Part B
), pp.
252
259
. 10.1016/j.ijpe.2012.06.002
20.
Cao
,
M.
, and
Zhang
,
Q.
,
2011
, “
Supply Chain Collaboration: Impact on Collaborative Advantage and Firm Performance
,”
J. Oper. Manage.
,
29
(
3
), pp.
163
180
. 10.1016/j.jom.2010.12.008
21.
Nielsen
,
J.
,
1994
,
Usability Engineering
,
Elsevier
,
New York
.
22.
Rubin
,
J.
, and
Chisnell
,
D.
,
2008
,
Handbook of Usability Testing: How to Plan, Design and Conduct Effective Tests
,
John Wiley & Sons
,
New York
.
23.
Pendell
,
K. D.
, and
Bowman
,
M. S.
,
2012
, “
Usability Study of a Library’s Mobile Website: An Example From Portland State University
,”
Inf. Technol. Libr.
,
31
(
2
), pp.
45
62
.
24.
Dishman
,
M.
,
2015
, “
Website Usability Testing Software-Improving User Experience and Satisfaction With Community College Websites
”,
Community College Enterprise
,
21
(
1
), pp.
84
87
.
25.
Patalano
,
S.
,
Lanzotti
,
A.
,
Del Giudice
,
D.
,
Vitolo
,
F.
, and
Gerbino
,
S.
,
2017
, “
On the Usability Assessment of the Graphical User Interface Related to a Digital Pattern Software Tool
,”
Int. J. Interact. Des. Manuf.
,
11
(
3
), pp.
457
469
. 10.1007/s12008-015-0287-y
26.
Grandi
,
F.
,
Peruzzini
,
M.
,
Zanni
,
L.
,
Elisabetta
,
C.
, and
Pellicciari
,
M.
,
2018
, “
Digital Manufacturing and Virtual Reality for Tractor’s Human-Centred Design
,”
Volume 7: Transdisciplinary Engineering Methods for Social Innovation of Industry 4.0
,
Modena, Italy
,
July 3–6
,
IOS Press
, pp.
702
711
.
27.
Han
,
S. H.
,
Yang
,
H.
, and
Im
,
D.-G.
,
2007
, “
Designing a Human–Computer Interface for a Process Control Room: A Case Study of a Steel Manufacturing Company
,”
Int. J. Ind. Ergon.
,
37
(
5
), pp.
383
393
. 10.1016/j.ergon.2006.12.006
28.
Ho
,
T. K.
,
1995
, “
Random Decision Forests
,”
Proceedings of the Third International Conference on Document Analysis and Recognition
,
Montreal, QC, Canada
,
Aug. 14–16
, Vol.
1
, pp.
278
282
.
29.
Meinshausen
,
N.
,
2006
, “
Quantile Regression Forests
,”
J. Mach. Learn. Res.
,
7
(
1
), pp.
983
999
.
30.
Xuan
,
S.
,
Liu
,
G.
,
Li
,
Z.
,
Zheng
,
L.
,
Wang
,
S.
, and
Jiang
,
C.
,
2018
, “
Random Forest for Credit Card Fraud Detection
,”
IEEE International Conference on Networking, Sensing and Control
,
Zhuhai, China
,
Mar. 27–29
, pp.
1
6
.
31.
Calderoni
,
L.
,
Ferrara
,
M.
,
Franco
,
A.
, and
Maio
,
D.
,
2015
, “
Indoor Localization in a Hospital Environment Using Random Forest Classifiers
,”
Expert Syst. Appl.
,
42
(
1
), pp.
125
134
. 10.1016/j.eswa.2014.07.042
32.
Altendrof
,
J.
,
Brende
,
P.
, and
Lessard
,
L.
,
2005
, “
Fraud Detection for Online Retail Using Random Forests
,”
Technical Report
.
33.
Efron
,
B.
,
1992
, “Bootstrap Methods: Another Look at the Jackknife,”
Breakthroughs in Statistics
,
S.
Kotz
, and
N. L.
Johnson
, eds.,
Springer
,
New York
, pp.
569
593
.
34.
Portnoy
,
S.
, and
Koenker
,
R.
,
1997
, “
The Gaussian Hare and the Laplacian Tortoise: Computability of Squared-Error Versus Absolute-Error Estimators
,”
Stat. Sci.
,
12
(
4
), pp.
279
300
. 10.1214/ss/1030037960
35.
He
,
X.
,
Ng
,
P.
, and
Portnoy
,
S.
,
1998
, “
Bivariate Quantile Smoothing Splines
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
60
(
3
), pp.
537
550
. 10.1111/1467-9868.00138
36.
Koenker
,
R.
,
Ng
,
P.
, and
Portnoy
,
S.
,
1994
, “
Quantile Smoothing Splines
,”
Biometrika
,
81
(
4
), pp.
673
680
. 10.1093/biomet/81.4.673
37.
Donoho
,
D. L.
,
2000
, “
High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality
,”
AMS Math. Challenges Lecture
,
Los Angeles, CA
,
Aug. 7–12
, Vol.
1
, p.
32
.
38.
Pearson
,
K.
,
1901
, “
LIII. on Lines and Planes of Closest Fit to Systems of Points in Space
,”
Lond. Edinburgh Dublin Philos. Mag. J. Sci.
,
2
(
11
), pp.
559
572
. 10.1080/14786440109462720
39.
Kolenikov
,
S.
, and
Angeles
,
G.
,
2004
,
The Use of Discrete Data in PCA: Theory, Simulations, and Applications to Socioeconomic Indices
,
Carolina Population Center, University of North Carolina
,
Chapel Hill, NC
, pp.
1
59
.
40.
Kaiser
,
H. F.
,
1958
, “
The Varimax Criterion for Analytic Rotation in Factor Analysis
,”
Psychometrika
,
23
(
3
), pp.
187
200
. 10.1007/BF02289233
41.
Liaw
,
A.
, and
Wiener
,
M.
,
2002
, “
Classification and Regression by Randomforest
,”
R News
,
2
(
3
), pp.
18
22
.
42.
Meinshausen
,
N.
,
2017
, “
quantregForest: Quantile Regression Forests
,”
R package version 1.3-7
. https://cran.r-project.org/web/packages/quantregForest/index.html
43.
Wickham
,
H.
,
2009
,
ggplot2: Elegant Graphics for Data Analysis
,
Springer-Verlag
,
New York
.
44.
Wickham
,
H.
,
2007
, “
Reshaping Data With the Reshape Package
,”
J. Stat. Softw.
,
21
(
12
), pp.
1
20
. 10.18637/jss.v021.i12
45.
Chang
,
W.
,
Cheng
,
J.
,
Allaire
,
J.
,
Xie
,
Y.
, and
McPherson
,
J.
,
2018
, “
shiny: Web Application Framework for R
,”
R package version 1.2.0
. https://cran.r-project.org/web/packages/shiny/index.html
46.
Lewis
,
J. R.
,
1995
, “
IBM Computer Usability Satisfaction Questionnaires: Psychometric Evaluation and Instructions for Use
,”
Int. J. Hum. Comput. Interact.
,
7
(
1
), pp.
57
78
. 10.1080/10447319509526110
You do not currently have access to this content.