Abstract

As an important branch of machine learning, Monte Carlo learning has been successfully applied to engineering design optimization and product predictive analysis, such as design optimization of heavy machinery. However, the accuracy of the classical Monte Carlo algorithm is not high enough, and the existing improved Monte Carlo algorithm has a complex calculation process and difficult parameter control. In this paper, the Monte Carlo method based on boundary point densification is proposed to calculate workspace. This paper takes the calculation of 2000T offshore crane workspace as an example to verify the effectiveness and practicability of the algorithm. The D-H method is used to establish the workspace model of the offshore crane. The calculation method of crane workspace based on the Monte Carlo learning method with increased boundary point density is discussed in detail, and the correctness of crane workspace is verified. The steps of the algorithm include generate the basic space, extract and draw the boundary, increase the density of boundary points, and cyclic. The rationality of the method is proved by comparing the simulation results with the design experience and calculated values.

References

References
1.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
A Machine Learning Approach to Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021004
. 10.1115/1.4042325
2.
He
,
B.
, and
Bai
,
K. J.
,
2020
, “
Digital Twin-Driven Sustainable Intelligent Manufacturing: A Review
,”
Adv. Manuf.
, in press. 10.1007/s40436-020-00302-5
3.
Tao
,
F.
,
Qi
,
Q.
,
Liu
,
A.
, and
Kusiak
,
A.
,
2018
, “
Data-Driven Smart Manufacturing
,”
J. Manuf. Syst.
,
48(C)
, pp.
157
169
. 10.1016/j.jmsy.2018.01.006
4.
Kupcsik
,
A.
,
Deisenroth
,
M. P.
,
Peters
,
J.
,
Loh
,
A. P.
,
Vadakkepat
,
P.
, and
Neumann
,
G.
,
2017
, “
Model-Based Contextual Policy Search for Data-Efficient Generalization of Robot Skills
,”
Artif. Intell.
,
247
, pp.
415
439
. 10.1016/j.artint.2014.11.005
5.
Doltsinis
,
S.
,
Ferreira
,
P.
, and
Lohse
,
N.
,
2012
, “
Reinforcement Learning for Production Ramp-Up: A Q-Batch Learning Approach
,”
2012 11th IEEE International Conference on Machine Learning and Applications
,
Boca Raton, FL
,
Dec. 12–15
, pp.
610
615
.
6.
He
,
B.
,
Liu
,
Y. J.
,
Zeng
,
L. B.
,
Wang
,
S.
,
Zhang
,
D.
, and
Yu
,
Q. Y.
,
2019
, “
Product Carbon Footprint Across Sustainable Supply Chain
,”
J. Cleaner Prod.
,
241
, p.
118320
. 10.1016/j.jclepro.2019.118320
7.
He
,
B.
,
Cao
,
X. Y.
, and
Gu
,
Z. C.
,
2020
, “
Kinematics of Underactuated Robotics for Product Carbon Footprint
,”
J. Cleaner Prod.
,
257
, p.
120491
. 10.1016/j.jclepro.2020.120491
8.
He
,
B.
,
Li
,
F. F.
,
Cao
,
X. Y.
, and
Li
,
T. Y.
,
2020
, “
Product Sustainable Design: A Review From the Environmental, Economic, and Social Aspects
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
4
), p.
040801
. 10.1115/1.4045408
9.
He
,
B.
,
Zhang
,
D.
,
Gu
,
Z. C.
,
Zhu
,
X. R.
, and
Cao
,
X. Y.
,
2020
, “
Skeleton Model-Based Product Low Carbon Design Optimization
,”
J. Cleaner. Prod.
(In Press)
10.
Janson
,
L.
,
Schmerling
,
E.
, and
Pavone
,
M.
,
2018
, “Monte Carlo Motion Planning for Robot Trajectory Optimization Under Uncertainty,”
Robotics Research
,
Springer
,
New York
, pp.
343
361
.
11.
He
,
B.
,
Shao
,
Y.
,
Wang
,
S.
,
Gu
,
Z.
, and
Bai
,
K.
,
2019
, “
Product Environmental Footprints Assessment for Product Life Cycle
,”
J. Cleaner Prod.
,
233
, pp.
446
460
. 10.1016/j.jclepro.2019.06.078
12.
Gupta
,
K. C.
,
1986
, “
On the Nature of Robot Workspace
,”
Int. J. Robot. Res.
,
5
(
2
), pp.
112
121
. 10.1177/027836498600500212
13.
Zhu
,
Y.
,
Jin
,
B.
,
Li
,
W.
, and
Li
,
S.
,
2014
, “
Optimal Design of Hexapod Walking Robot Leg Structure Based on Energy Consumption and Workspace
,”
Trans. Can. Soc. Mech. Eng.
,
38
(
3
), pp.
305
317
. 10.1139/tcsme-2014-0022
14.
Hosseini
,
M. A.
, and
Daniali
,
H. M.
,
2015
, “
Cartesian Workspace Optimization of Tricept Parallel Manipulator With Machining Application
,”
Robotica
,
33
(
9
), pp.
1948
1957
. 10.1017/S0263574714000861
15.
Zhou
,
Y.
,
Niu
,
J.
,
Liu
,
Z.
, and
Zhang
,
F.
,
2017
, “
A Novel Numerical Approach for Workspace Determination of Parallel Mechanisms
,”
J. Mech. Sci. Technol.
,
31
(
6
), pp.
3005
3015
. 10.1007/s12206-017-0544-z
16.
He
,
B.
,
Hou
,
S.
,
Deng
,
Z.
,
Cao
,
J.
, and
Liu
,
W.
,
2014
, “
Workspace Analysis of a Novel Underactuated Robot Wrist Based on Virtual Prototyping
,”
Int. J. Adv. Manuf. Technol.
,
72
(
1–4
), pp.
531
541
. 10.1007/s00170-014-5687-9
17.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
Cambridge, UK
.
18.
Zhang
,
J.
,
Li
,
W.
,
Yu
,
J.
,
Feng
,
X.
,
Zhang
,
Q.
, and
Chen
,
G.
,
2017
, “
Study of Manipulator Operations Maneuvered by a ROV in Virtual Environments
,”
Ocean Eng.
,
142
, pp.
292
302
. 10.1016/j.oceaneng.2017.07.008
19.
Kim
,
B.
, and
Kim
,
T.
,
2017
, “
Monte Carlo Simulation for Offshore Transportation
,”
Ocean Eng.
,
129
, pp.
177
190
. 10.1016/j.oceaneng.2016.11.007
20.
Cao
,
Y.
,
Lu
,
K.
,
Li
,
X.
, and
Zang
,
Y.
,
2011
, “
Accurate Numerical Methods for Computing 2D and 3D Robot Workspace
,”
Int. J. Adv. Rob. Syst.
,
8
(
6
), pp.
1
13
.
21.
Peidró
,
A.
,
Reinoso
,
O.
,
Gil
,
A.
,
Marín
,
J. M.
, and
Payá
,
L.
,
2017
, “
An Improved Monte Carlo Method Based on Gaussian Growth to Calculate the Workspace of Robots
,”
Eng. Appl. Artif. Intell.
,
64
, pp.
197
207
. 10.1016/j.engappai.2017.06.009
22.
He
,
B.
,
Wang
,
S.
, and
Liu
,
Y. J.
,
2019
, “
Underactuated Robotics: A Review
,”
Int. J. Adv. Rob. Syst.
,
16
(
4
), pp.
1
29
.
You do not currently have access to this content.