Abstract

As a critical asset, gantry has wide applications in many fields such as medical image area, infrastructure, and heavy industry. Mostly, the gantry is reliable, however, the loss led by the gantry lockout is inestimable enormous. Moreover, there are limited previous gantry studies concentrated on the statistical quality control to detect the fault not to mention the research that focuses on the algorithms applied to the process status sequence to detect the fault. Time series gantry process status sequence usually consists of categorical values, which makes it hard to obtain features for the task of fault identification. This paper proposes a novel method using texture extraction in image processing to obtain the features of gantry process status sequence. The histogram of oriented gradients (HOG) texture extraction technique is used to the process status sequence. To demonstrate the effectiveness of image-based feature extraction, we applied different machine learning algorithms to the time series gantry process status sequences provided by a leading automobile manufacturer. Results demonstrate that the sequence after the transformation of texture extraction technique has improved the accuracy of machine learning algorithms (i.e., 10% increase on average for KNN, 32% increase for LDA, 26% increase for QDA, and 8% increase for linear SVM).

References

References
1.
Berbeco
,
R. I.
,
Jiang
,
S. B.
,
Sharp
,
G. C.
,
Chen
,
G. T.
,
Mostafavi
,
H.
, and
Shirato
,
H.
,
2004
, “
Integrated Radiotherapy Imaging System (IRIS): Design Considerations of Tumour Tracking With Linac Gantry-Mounted Diagnostic X-Ray Systems With Flat-Panel Detectors
,”
Phys. Med. Biol.
,
49
(
2
), pp.
243
255
. 10.1088/0031-9155/49/2/005
2.
Oppelt
,
A.
,
2011
,
Imaging Systems for Medical Diagnostics: Fundamentals, Technical Solutions and Applications for Systems Applying Ionizing Radiation, Nuclear Magnetic Resonance and Ultrasound
,
John Wiley & Sons
,
New York
.
3.
Guo
,
W.
,
Guo
,
S.
,
Wang
,
H.
,
Yu
,
X.
,
Januszczak
,
A.
, and
Suriano
,
S.
,
2017
, “
A Data-Driven Diagnostic System Utilizing Manufacturing Data Mining and Analytics
,”
SAE Int. J. Mater. Manuf.
,
10
(
3
), pp.
282
292
. 10.4271/2017-01-0233
4.
Jasperneite
,
J.
,
2012
, “
Was Hinter Begriffen Wie Industrie 4.0 Steckt
,”
Computer & Automation, 19
.
5.
Kagermann
,
H.
,
Helbig
,
J.
,
Hellinger
,
A.
, and
Wahlster
,
W.
,
2013
,
Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0: Securing the Future of German Manufacturing Industry; Final Report of the Industrie 4.0 Working Group
,
Forschungsunion
.
6.
Lasi
,
H.
,
Fettke
,
P.
,
Kemper
,
H.-G.
,
Feld
,
T.
, and
Hoffmann
,
M.
,
2014
, “
Industry 4.0
,”
Bus. Inform. Syst. Eng.
,
6
(
4
), pp.
239
242
. 10.1007/s12599-014-0334-4
7.
Hermann
,
M.
,
Pentek
,
T.
, and
Otto
,
B.
,
2016
, “
Design Principles for Industrie 4.0 Scenarios
,”
2016 49th Hawaii International Conference on System Sciences (HICSS), IEEE
,
Koloa, HI
,
Jan. 5–8
, IEEE, pp.
3928
3937
.
8.
Markle
,
R. J.
, and
Weaver
,
E.
,
2003
,
Troubleshooting Method Involving Image-Based Fault Detection and Classification (FDC) and Troubleshooting Guide (TSG), and Systems Embodying the Method
,
Google Patents
.
9.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2009
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
,
Springer Science & Business Media
,
New York
.
10.
Luis
,
A.
,
Mejail
,
M.
,
Gomez
,
L.
, and
Jacobo
,
J.
, eds.,
2012
, “
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
,”
17th Iberoamerican Congress, CIARP 2012
,
Buenos Aires, Argentina
,
Sept. 3–6
, Vol.
7441
,
Springer
.
11.
Aguilera
,
C.
,
Orduna
,
E.
, and
Ratta
,
G.
,
2006
, “
Fault Detection, Classification and Faulted Phase Selection Approach Based on High-Frequency Voltage Signals Applied to a Series-Compensated Line
,”
IEE Proceedings-Generation, Transmission and Distribution
,
153
(
4
), pp.
469
475
. 10.1049/ip-gtd:20045157
12.
Mahfouz
,
M. M.
, and
El-Sayed
,
M. A.
,
2016
, “
Smart Grid Fault Detection and Classification With Multi-Distributed Generation Based on Current Signals Approach
,”
IET Gen. Trans. Dis.
,
10
(
16
), pp.
4040
4047
. 10.1049/iet-gtd.2016.0364
13.
Ning
,
L.
,
Tai
,
N.
,
Zheng
,
X.
,
Huang
,
W.
, and
Nadeem
,
M. H.
,
2017
, “
Detection and Classification of MMC-HVDC Transmission Line Faults Based on One-Terminal Transient Current Signal
,”
Power & Energy Society General Meeting, 2017 IEEE
,
Chicago, IL
,
July 16–20
, IEEE, pp.
1
5
.
14.
Chen
,
K.
,
Hu
,
J.
, and
He
,
J.
,
2018
, “
Detection and Classification of Transmission Line Faults Based on Unsupervised Feature Learning and Convolutional Sparse Autoencoder
,”
IEEE Trans. Smart Grid
,
9
(
3
), pp.
1748
1758
. 10.1109/tsg.2016.2598881
15.
Jana
,
S.
, and
De
,
A.
,
2017
, “
Transmission Line Fault Pattern Recognition Using Decision Tree Based Smart Fault Classifier in a Large Power Network
,”
2017 IEEE Calcutta Conference (CALCON)
,
Kolkata, India
,
Dec. 2–3
, pp.
387
391
.
16.
Liu
,
J.
,
2012
, “
Shannon Wavelet Spectrum Analysis on Truncated Vibration Signals for Machine Incipient Fault Detection
,”
Meas. Sci. Technol.
,
23
(
5
), p.
055604
. 10.1088/0957-0233/23/5/055604
17.
Casimir
,
R.
,
Boutleux
,
E.
, and
Clerc
,
G.
,
2003
, “
Fault Diagnosis in an Induction Motor by Pattern Recognition Methods
,”
4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2003 (SDEMPED 2003)
,
Atlanta, GA, USA
,
Aug. 24–26
, pp.
294
299
.
18.
He
,
Q. P.
, and
Wang
,
J.
,
2007
, “
Fault Detection Using the K-Nearest Neighbor Rule for Semiconductor Manufacturing Processes
,”
IEEE Trans. Semicond. Manuf.
,
20
(
4
), pp.
345
354
. 10.1109/TSM.2007.907607
19.
Cheng
,
F.-T.
,
Chang
,
J. Y.-C.
,
Huang
,
H.-C.
,
Kao
,
C.-A.
,
Chen
,
Y.-L.
, and
Peng
,
J.-L.
,
2011
, “
Benefit Model of Virtual Metrology and Integrating AVM Into MES
,”
IEEE Trans. Semicond. Manuf.
,
24
(
2
), pp.
261
272
. 10.1109/TSM.2011.2104372
20.
Fezari
,
M.
,
Taif
,
F. Z.
,
Lafifi
,
M. M.
, and
Boulebtateche
,
B.
,
2014
, “
Noise Emission Analysis a Way for Early Detection and Classification Faults in Rotating Machines
,”
2014 16th International Power Electronics and Motion Control Conference and Exposition (PEMC)
,
Antalya, Turkey
,
Sept. 21–24
, IEEE, pp.
1094
1099
.
21.
Tang
,
X.
, and
Xu
,
A.
,
2016
, “
Multi-Class Classification Using Kernel Density Estimation on K-Nearest Neighbours
,”
Electron. Lett.
,
52
(
8
), pp.
600
602
. 10.1049/el.2015.4437
22.
Majd
,
A. A.
,
Samet
,
H.
, and
Ghanbari
,
T.
,
2017
, “
K-NN Based Fault Detection and Classification Methods for Power Transmission Systems
,”
Protect. Contr. Mod. Power Syst.
,
2
(
1
), p.
32
. 10.1186/s41601-017-0063-z
23.
Tuceryan
,
M.
, and
Jain
,
A. K.
,
1993
, “Texture Analysis,”
Handbook of Pattern Recognition and Computer Vision
,
World Scientific
,
Singapore
, pp.
235
276
.
24.
Nath
,
S. S.
,
Mishra
,
G.
,
Kar
,
J.
,
Chakraborty
,
S.
, and
Dey
,
N.
,
2014
, “
A Survey of Image Classification Methods and Techniques
,”
2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT)
,
C. H.
Chen
,
L. F.
Pau
, and
P. S. P.
Wang
, eds.,
Kanyakumari, India
,
July 10–11
, IEEE, pp.
554
557
.
25.
Forsyth
,
D. A.
, and
Ponce
,
J.
,
2003
, “
A Modern Approach
,”
Computer Vision: A Modern Approach
, pp.
88
101
.
26.
Alorf
,
A.
, and
Abbott
,
A. L.
,
2017
, “
In Defense of Low-Level Structural Features and SVMs for Facial Attribute Classification: Application to Detection of Eye State, Mouth State, and Eyeglasses in the Wild
,”
2017 IEEE International Joint Conference on Biometrics (IJCB), IEEE
, pp.
599
607
.
27.
Bricher
,
D.
, and
Müller
,
A.
,
2020
, “
A Supervised Machine Learning Approach for Intelligent Process Automation in Container Logistics
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
3
), p.
031006
. 10.1115/1.4046332
28.
Chen
,
H.
,
Teng
,
Z.
,
Guo
,
Z.
, and
Zhao
,
P.
,
2020
, “
An Integrated Target Acquisition Approach and Graphical User Interface Tool for Parallel Manipulator Assembly
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021006
. 10.1115/1.4045411
29.
Zhu
,
Q.
,
Yeh
,
M.-C.
,
Cheng
,
K.-T.
, and
Avidan
,
S.
,
2006
, “
Fast Human Detection Using a Cascade of Histograms of Oriented Gradients
,”
2006 IEEE Computer Society Conference On Computer Vision and Pattern Recognition, IEEE
,
New York, NY, USA
,
June 17-22, 2006
.
30.
Kopaczka
,
M.
,
Ham
,
H.
,
Simonis
,
K.
,
Kolk
,
R.
, and
Merhof
,
D.
,
2016
, “
Automated Enhancement and Detection of Stripe Defects in Large Circular Weft Knitted Fabrics
,”
2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE
, pp.
1
4
.
31.
Tsai
,
W.-Y.
,
Choi
,
J.
,
Parija
,
T.
,
Gomatam
,
P.
,
Das
,
C.
,
Sampson
,
J.
, and
Narayanan
,
V.
,
2017
, “
Co-Training of Feature Extraction and Classification Using Partitioned Convolutional Neural Networks
,”
Proceedings of the 54th Annual Design Automation Conference 2017
,
Austin, TX, USA
,
June 18–22
, ACM, p.
58
.
32.
Wilcox
,
P.
,
Horton
,
T. M.
,
Youn
,
E.
,
Jeong
,
M. K.
,
Tate
,
D.
,
Herrman
,
T.
, and
Nansen
,
C.
,
2014
, “
Evolutionary Refinement Approaches for Band Selection of Hyperspectral Images With Applications to Automatic Monitoring of Animal Feed Quality
,”
Intell. Data Anal.
,
18
(
1
), pp.
25
42
. 10.3233/IDA-130626
33.
Li
,
P.
,
Zhang
,
S.
,
Luo
,
D.
, and
Luo
,
H.
,
2015
, “
Fault Diagnosis of Analog Circuit Using Spectrogram and LVQ Neural Network
,”
2015 27th Chinese Control and Decision Conference (CCDC), IEEE
, pp.
2673
2678
.
34.
Omidi
,
H.
,
SadeghHelfroush
,
M.
,
Danyali
,
H.
,
Tashk
,
A.
, and
Kazemi
,
K.
,
2017
, “
A Novel Method for Classification of Power Quality Disturbances Based on a New One Dimensional Local Binary Pattern Approach
,”
2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC), IEEE
,
Shah Alam, Malaysia
,
Aug. 4–5
, IEEE, pp.
225
229
.
You do not currently have access to this content.