Abstract

Model-based definitions (MBDs) aim to capture both geometric and non-geometric data in digital product definitions using 3D computer-aided design (CAD) models, as a form of product definition baseline, to disseminate product information across different stages of the lifecycle. MBDs can potentially eliminate error-prone information exchange associated with traditional paper-based drawings and improve the fidelity of component details, captured using 3D CAD models. A component’s behavior during its lifecycle stages influences its downstream performance, and if included within the MBD of a part, could be used to forecast performance upfront during the design and explore newer designs to enhance performance. However, current CAD capabilities limit associating behavioral information with the component’s shape definition. This paper presents a CAD-based tool to store and retrieve metadata using point objects within a CAD model, creating linkages to spatial locations within the component. The tool is illustrated for storage and retrieval of bulk residual stresses developed during the manufacturing of a turbine disk acquired from process modeling and characterization. Further, variations in residual stress distribution owing to process model uncertainties have been captured as separate instances of the disk’s CAD models to represent part-to-part variability as an analogy to track individual serialized components for digital twins. The propagation of varying residual stresses from these CAD models within the damage tolerance analysis performed at critical locations in the disk has been demonstrated. The combination of geometric and non-geometric data inside the MBD, via storage of spatial and feature varying information, presents opportunities to create digital twin(s) of actual component(s).

References

References
1.
Gonzalez
,
C.
,
2016
, “
MachineDesign: What’s the Difference Between Turbine Engines
,” https://www.machinedesign.com/motors-drives/article/21832035/whats-the-difference-between-turbine-engines, Accessed 15 June, 2018.
2.
Quintana
,
V.
,
Rivest
,
L.
,
Pellerin
,
R.
,
Venne
,
F.
, and
Kheddouci
,
F.
,
2010
, “
Will Model-Based Definition Replace Engineering Drawings Throughout the Product Lifecycle? A Global Perspective From Aerospace Industry
,”
Comput. Ind.
,
61
(
5
), pp.
497
508
. 10.1016/j.compind.2010.01.005
3.
Sangid
,
M. D.
, and
Matlik
,
J. F.
,
2016
,
“ANALYSIS A Better Way to Engineer Aerospace Components
,”
Aerospace America
,
54
(
3
), pp.
40
43
.
4.
Qian
,
L.
, and
Gero
,
J. S.
,
2010
, “
Function–Behavior–Structure Paths and Their Role in Analogy-Based Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
(
4
), p.
289
. 10.1017/S0890060400001633
5.
Ruemler
,
S. P.
,
Zimmerman
,
K. E.
,
Hartman
,
N. W.
,
Hedberg
,
T.
, and
Barnard Feeny
,
A.
,
2016
, “
Promoting Model-Based Definition to Establish a Complete Product Definition
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051008
. 10.1115/1.4034625
6.
Hedberg
,
T.
,
Lubell
,
J.
,
Fischer
,
L.
,
Maggiano
,
L.
, and
Barnard Feeney
,
A.
,
2016
, “
Testing the Digital Thread in Support of Model-Based Manufacturing and Inspection
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
2
), p.
021001
. 10.1115/1.4032697
7.
Camba
,
J.
, and
Contero
,
M.
,
2015
, “
Assessing the Impact of Geometric Design Intent Annotations on Parametric Model Alteration Activities. Computers in Industry. 71:35–45. Copyright Elsevier
,”
Comput. Ind.
,
71
, pp.
35
45
. 10.1016/j.compind.2015.03.006
8.
Feeney
,
A. B.
,
Frechette
,
S. P.
, and
Srinivasan
,
V.
,
2014
, “
A Portrait of an ISO STEP Tolerancing Standard as an Enabler of Smart Manufacturing Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
2
), p.
021005
. 10.1115/1.4029050
9.
Furrer
,
D. U.
,
Dimiduk
,
D. M.
,
Cotton
,
J. D.
, and
Ward
,
C. H.
,
2017
, “
Making the Case for a Model-Based Definition of Engineering Materials
,”
Integr. Mater. Manuf. Innov.
,
6
(
3
), pp.
249
263
. 10.1007/s40192-017-0102-7
10.
Miller
,
A. M.
,
Hartman
,
N. W.
,
Feeney
,
A. B.
, and
Zahner
,
J.
,
2017
, “
Towards Identifying the Elements of a Minimum Information Model for Use in Model-Based Definition
,”
International Manufacturing Science and Engineering Conference
,
Los Angeles, CA
,
June 4–8
, Vol.
50749
, p.
V003T04A017
.
11.
Hedberg
,
T.
,
Feeney
,
A. B.
,
Helu
,
M.
, and
Camelio
,
J. A.
,
2017
, “
Toward a Lifecycle Information Framework and Technology in Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), pp.
1
13
. 10.1115/1.4034132
12.
Hedberg
,
T. D.
,
Bajaj
,
M.
, and
Camelio
,
J. A.
,
2020
, “
Using Graphs to Link Data Across the Product Lifecycle for Enabling Smart Manufacturing Digital Threads
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), pp.
1
15
. 10.1115/1.4044921
13.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2017
, “
Shaping the Digital Twin for Design and Production Engineering
,”
CIRP Ann.—Manuf. Technol.
,
66
(
1
), pp.
141
144
. 10.1016/j.cirp.2017.04.040
14.
Grieves
,
M.
, and
Vickers
,
J.
,
2017
, “Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems,”
Transdisciplinary Perspectives on Complex Systems
,
F.-J.
Kahlen
,
S.
Flumerfelt
, and
A.
Alves
, eds.,
Springer
,
Cham, Switzerland
, pp.
85
113
.
15.
Webster
,
G. A.
, and
Ezeilo
,
A. N.
,
2001
, “
Residual Stress Distributions and Their Influence on Fatigue Lifetimes
,”
Int. J. Fatigue
,
23
(
Supplement 1
), pp.
375
383
. 10.1016/S0142-1123(01)00133-5
16.
Withers
,
P. J.
, and
Bhadeshia
,
H. K. D. H.
,
2001
, “
Residual Stress. Part 2—Nature and Origins
,”
Mater. Sci. Technol.
,
17
(
4
), pp.
366
375
. 10.1179/026708301101510087
17.
Rolph
,
J.
,
Preuss
,
M.
,
Iqbal
,
N.
,
Hofmann
,
M.
,
Nikov
,
S.
,
Hardy
,
M. C.
,
Glavicic
,
M. G.
,
Ramanathan
,
R.
, and
Evans
,
A.
,
2012
, “
Residual Stress Evolution During Manufacture of Aerospace Forgings
,”
Superalloys 2012: 12th International Symposium on Superalloys.
pp.
881
891
.
18.
Gayda
,
J.
,
2001
, “
The Effect of Heat Treatment on Residual Stress and Machining Distortions in Advanced Nickel Base Disk Alloys
,” NASA/TM-2001-210717, Jan.
19.
Ma
,
K.
,
Goetz
,
R.
, and
Svrivatsa
,
S. K.
,
2010
, “
Modeling of Residual Stress and Machining Distortion in Aerospace Components
,”
ASM Handbook
.
Vol. 22B: Metals Process Simulation
.
20.
Fluhrer
,
J.
,
2006
, “
DEFORM 3D User's Manual Version 6. 0
”,
Scientific Forming Technologies Corporation
,
Columbus, OH
.
21.
Nelson
,
D.
,
1982
, “Effects of Residual Stress on Fatigue Crack Propagation,”
Residual Stress Effects in Fatigue
,
J.
Throop
and
H.
Reemsnyder
, eds.,
ASTM
,
West Conshohocken, PA
, pp.
172
194
.
22.
Lammi
,
C. J.
, and
Lados
,
D. A.
,
2012
, “
Effects of Processing Residual Stresses on Fatigue Crack Growth Behavior of Structural Materials: Experimental Approaches and Microstructural Mechanisms
,”
Metall. Mater. Trans. A
,
43
(
1
), pp.
87
107
. 10.1007/s11661-011-0879-5
23.
John
,
R.
,
Larsen
,
J. M.
,
Buchanan
,
D. J.
, and
Ashbaugh
,
N. E.
,
2001
, “
Incorporating Residual Stresses in Life Prediction of Turbine Engine Disks
,”
Proceedings from NATO RTO (AVT) Symposium on Monitoring and Management of Gas Turbine Fleets for Extended Life and Reduced Costs
,
Manchester, UK
,
Oct. 8–11
.
24.
McClung
,
R.
,
Enright
,
M.
,
Liang
,
W.
,
Chan
,
K.
,
Moody
,
J.
,
Wu
,
W.-T.
,
Shankar
,
R.
,
Luo
,
W.
,
Oh
,
J.
, and
Fitch
,
S.
,
2012
, “
Integration of Manufacturing Process Simulation With Probabilistic Damage Tolerance Analysis of Aircraft Engine Components
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, pp.
1
13
.
25.
Cernatescu
,
I.
,
Venkatesh
,
V.
,
Glanovsky
,
J. L.
,
Landry
,
L. H.
,
Green
,
R. N.
,
Street
,
M.
, and
Hartford
,
E.
,
2015
, “
Residual Stress Measurements Implementation for Model Validation as Part of Foundational Engineering Problem Program on ICME of Bulk Residual Stress in Ni Rotors
,”
AIAA SciTech Conference Proceedings, 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Kissimmee, FL
,
Jan. 5–9
, pp.
1
9
.
26.
Withers
,
P. J.
, and
Bhadeshia
,
H. K. D. H.
,
2001
, “
Residual Stress. Part 1–Measurement Techniques
,”
Mater. Sci. Technol.
,
17
(
4
), pp.
355
365
. 10.1179/026708301101509980
27.
Venkatesh
,
V.
,
Green
,
R.
,
O’Connell
,
J.
,
Cernatescu
,
I.
,
Goetz
,
R.
,
Wong
,
T.
,
Streich
,
B.
,
Saraf
,
V.
,
Glavicic
,
M.
,
Slavik
,
D.
,
Sampath
,
R.
,
Sharp
,
A.
,
Song
,
B.
, and
Bocchini
,
P.
,
2018
, “
An ICME Framework for Incorporating Bulk Residual Stresses in Rotor Component Design
,”
Integr. Mater. Manuf. Innov.
,
7
(
4
), pp.
173
185
. 10.1007/s40192-018-0119-6
28.
Miller
,
A. M. D.
,
Alvarez
,
R.
, and
Hartman
,
N.
,
2018
, “
Towards an Extended Model-Based Definition for the Digital Twin
,”
Comput. Aided Des. Appl.
,
15
(
6
), pp.
880
891
. 10.1080/16864360.2018.1462569
29.
Cowles
,
B. A.
,
Backman
,
D. G.
, and
Dutton
,
R. E.
,
2015
, “
Update to Recommended Best Practice for Verification and Validation of ICME Methods and Models for Aerospace Applications
,”
Integr. Mater. Manuf. Innov.
,
4
(
1
), pp.
16
20
. 10.1186/s40192-014-0030-8
30.
Cláudio
,
R. A.
,
Branco
,
C. M.
,
Gomes
,
E. C.
, and
Byrne
,
J.
,
2004
, “
Fatigue Life Prediction and Failure Analysis of a Gas Turbine Disc using the Finite‐Element Method
,”
Fatig. Fract. Eng. Mater. Struc.
,
27
(
9
), pp.
849
860
.
31.
Cook
,
C. H.
,
Spaeth
,
C. E.
,
Hunter
,
D. T.
, and
Hill
,
R. J.
,
1982
, “
Damage Tolerant Design of Turbine Engine Disks
,”
ASME 82-GT-311
,
Am. Soc. Mech. Eng.
,
New York
.
32.
Irwin
,
G. R.
,
1957
, “
Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,”
ASME J. Appl. Mech.-Trans. ASME
,
24
(Vol. E24), pp.
351
369
.
33.
Sangid
,
M. D.
,
Stori
,
J. A.
, and
Ferriera
,
P. M.
,
2010
, “
Process Characterization of Vibrostrengthening and Application to Fatigue Enhancement of Aluminum Aerospace Components—Part II: Process Visualization and Modeling
,”
Int. J. Adv. Manuf. Technol.
,
53
(
5–8
), pp.
561
575
. 10.1007/s00170-010-2858-1
34.
James
,
L. A.
, and
Mills
,
W. J.
,
1985
, “
Effect of Heat-Treatment and Heat-to-Heat Variations in the Fatigue-Crack Growth Response of Alloy 718
,”
Eng. Frac. Mech.
,
22
(
5
), pp.
797
817
. 10.1016/0013-7944(85)90109-2
35.
Walker
,
K.
,
1970
, “The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum,”
Effects of Environment and Complex Load History on Fatigue Life
,
M.
Rosenfeld
, ed.,
ASTM International
,
West Conshohocken, PA
, pp.
1
14
.
36.
James
,
L. A.
,
1989
, “Fatigue Crack Propagation in Alloy 718: A Review,”
Superalloy 718–Metallurgy and Applications
,
E. A.
Loria
, ed.,
The Minerals, Metals & Materials Society
,
Warrendale, PA
, pp.
499
515
.
37.
Glaessgen
,
E.
, and
Stargel
,
D.
,
2012
, “
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Honolulu, HI
,
Apr. 23–26
, pp.
1
14
.
38.
Annis
,
C. G.
,
Cargill
,
J. S.
,
Harris
,
J. A.
, and
Van Wanderham
,
M. C.
,
1981
, “
Engine Component Retirement-for-Cause: A Nondestructive Evaluation (NDE) and Fracture Mechanics-Based Maintenance Concept
,”
JOM J. Miner. Met. Mater. Soc.
,
33
(
7
), pp.
24
28
. 10.1007/BF03339447
39.
Lee
,
C.
,
Leem
,
C. S.
, and
Hwang
,
I.
,
2011
, “
PDM and ERP Integration Methodology Using Digital Manufacturing to Support Global Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
53
(
1–4
), pp.
399
409
. 10.1007/s00170-010-2833-x
You do not currently have access to this content.