Abstract

When neural networks are applied to solve complex engineering problems, the lack of training data can make the predictions of the surrogate inaccurate. Recently, physics-constrained neural networks were introduced to integrate physical models in the data-driven surrogate to improve the training efficiency with limited data. Nevertheless, the model-form and parameter uncertainty associated with the neural networks can still lead to unreliable predictions. In this article, a new physics-constrained Bayesian neural network (PCBNN) framework is proposed to quantify the uncertainty in physics-constrained neural networks. The bias and variance of predictions are considered simultaneously during the PCBNN training process. The variance and Kullback–Leibler divergence of neural network parameters are incorporated in the total loss function. The weights associated with the different losses are adjusted adaptively. The training of PCBNNs is also formulated as solving a minimax problem where the loss function for the worst-case scenario is minimized. The new PCBNN framework is demonstrated with engineering examples of heat transfer and phase transition based on both simulation data and experimental measurements. The results show that the accuracy and precision of predictions can be improved with the variance consideration in the PCBNN.

References

1.
Cursi
,
J.
, and
Koscianski
,
A.
,
2007
, “Physically Constrained Neural Network Models for Simulation,”
Advances and Innovations in Systems, Computing Sciences and Software Engineering
,
Springer
,
Berlin, Germany
, pp.
567
572
.
2.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
(
3
), pp.
686
707
.
3.
Liu
,
D.
, and
Wang
,
Y.
,
2019
, “
Multi-Fidelity Physics-Constrained Neural Network and Its Application in Materials Modeling
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121403
.
4.
Liu
,
D.
, and
Wang
,
Y.
,
2021
, “
A Dual-Dimer Method for Training Physics-Constrained Neural Networks With Minimax Architecture
,”
Neural Netw.
,
136
(
4
), pp.
112
125
.
5.
Liu
,
D.
,
Pusarla
,
P.
, and
Wang
,
Y.
,
2023
, “
Multi-Fidelity Physics-Constrained Neural Networks With Minimax Architecture
,”
ASME J. Comput. Inform. Sci. Eng.
,
22
(
4
), pp.
1
22
.
6.
Sun
,
L.
, and
Wang
,
J.-X.
,
2020
, “
Physics-Constrained Bayesian Neural Network for Fluid Flow Reconstruction With Sparse and Noisy Data
,”
Theoretical Appl. Mechan. Lett.
,
10
(
3
), pp.
161
169
.
7.
Dourado
,
A.
, and
Viana
,
F. A.
,
2020
, “
Physics-Informed Neural Networks for Missing Physics Estimation in Cumulative Damage Models: A Case Study in Corrosion Fatigue
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061007
.
8.
Zhang
,
R.
,
Liu
,
Y.
, and
Sun
,
H.
,
2020
, “
Physics-Guided Convolutional Neural Network (phycnn) for Data-Driven Seismic Response Modeling
,”
Eng. Struct.
,
215
(
14
), p.
110704
.
9.
Oommen
,
V.
, and
Srinivasan
,
B.
,
2022
, “
Solving Inverse Heat Transfer Problems Without Surrogate Models: A Fast, Data-Sparse, Physics Informed Neural Network Approach
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
4
), p.
041012
.
10.
Dwivedi
,
V.
, and
Srinivasan
,
B.
,
2022
, “
A Normal Equation-Based Extreme Learning Machine for Solving Linear Partial Differential Equations
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
1
), p.
014502
.
11.
Kabir
,
H. D.
,
Khosravi
,
A.
,
Hosen
,
M. A.
, and
Nahavandi
,
S.
,
2018
, “
Neural Network-Based Uncertainty Quantification: A Survey of Methodologies and Applications
,”
IEEE Access
,
6
(
1
), pp.
36218
36234
.
12.
Blundell
,
C.
,
Cornebise
,
J.
,
Kavukcuoglu
,
K.
, and
Wierstra
,
D.
,
2015
, “
Weight Uncertainty in Neural Network
,”
Proceedings of Machine Learning Research
,
Lille, France
,
July 7–9
, PMLR, pp.
1613
1622
.
13.
Tran
,
D.
,
Dusenberry
,
M.
,
van der Wilk
,
M.
, and
Hafner
,
D.
,
2019
, “
Bayesian Layers: A Module for Neural Network Uncertainty
,”
Adv. Neural Inform. Process. Syst.
,
32
(
1
), pp.
14660
14672
.
14.
Zhu
,
Y.
,
Zabaras
,
N.
,
Koutsourelakis
,
P.-S.
, and
Perdikaris
,
P.
,
2019
, “
Physics-Constrained Deep Learning for High-Dimensional Surrogate Modeling and Uncertainty Quantification Without Labeled Data
,”
J. Comput. Phys.
,
394
(
14
), pp.
56
81
.
15.
Belkin
,
M.
,
Hsu
,
D.
,
Ma
,
S.
, and
Mandal
,
S.
,
2019
, “
Reconciling Modern Machine-Learning Practice and the Classical Bias–Variance Trade-Off
,”
Proc. Natl. Acad. Sci. U.S.A.
,
116
(
32
), pp.
15849
15854
.
16.
Nakkiran
,
P.
,
Kaplun
,
G.
,
Bansal
,
Y.
,
Yang
,
T.
,
Barak
,
B.
, and
Sutskever
,
I.
,
2021
, “
Double Descent: Where Bigger Models and More Data Hurt
,”
J. Statis. Mech. Theo. Exp.
,
2021
(
12
), p.
124003
.
17.
Nabian
,
M. A.
, and
Meidani
,
H.
,
2020
, “
Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011006
.
18.
Wang
,
N.
,
Chang
,
H.
, and
Zhang
,
D.
,
2021
, “
Efficient Uncertainty Quantification for Dynamic Subsurface Flow With Surrogate by Theory-Guided Neural Network
,”
Comput. Methods. Appl. Mech. Eng.
,
373
(
1
), p.
113492
.
19.
Zhang
,
D.
,
Lu
,
L.
,
Guo
,
L.
, and
Karniadakis
,
G. E.
,
2019
, “
Quantifying Total Uncertainty in Physics-Informed Neural Networks for Solving Forward and Inverse Stochastic Problems
,”
J. Comput. Phys.
,
397
(
22
), p.
108850
.
20.
Daw
,
A.
,
Thomas
,
R. Q.
,
Carey
,
C. C.
,
Read
,
J. S.
,
Appling
,
A. P.
, and
Karpatne
,
A.
,
2020
, “
Physics-Guided Architecture (PGA) of Neural Networks for Quantifying Uncertainty in Lake Temperature Modeling
,”
Proceedings of the 2020 SIAM International Conference on Data Mining (SDM)
,
Cincinnati, OH
,
May 7–9
, SIAM, pp.
532
540
.
21.
Sahli Costabal
,
F.
,
Yang
,
Y.
,
Perdikaris
,
P.
,
Hurtado
,
D. E.
, and
Kuhl
,
E.
,
2020
, “
Physics-Informed Neural Networks for Cardiac Activation Mapping
,”
Frontiers Phys.
,
8
(
1
), p.
42
.
22.
Yang
,
Y.
, and
Perdikaris
,
P.
,
2019
, “
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
,”
J. Comput. Phys.
,
394
(
19
), pp.
136
152
.
23.
Abdar
,
M.
,
Pourpanah
,
F.
,
Hussain
,
S.
,
Rezazadegan
,
D.
,
Liu
,
L.
,
Ghavamzadeh
,
M.
,
Fieguth
,
P.
,
Cao
,
X.
,
Khosravi
,
A.
,
Acharya
,
U. R.
, and
Makarenkov
,
V.
,
2021
, “
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
,”
Inform. Fusion
,
76
(
12
), pp.
243
297
.
24.
Cobb
,
A. D.
, and
Jalaian
,
B.
,
2021
, “
Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks With Symmetric Splitting
,”
Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence
,
Virtual Online
,
July 27–30
, PMLR, pp.
675
685
.
25.
Kendall
,
A.
, and
Gal
,
Y.
,
2017
, “
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision
,”
Adv. Neural Inform. Process. Syst.
,
30
(
1
), pp.
5580
5590
.
26.
Vila
,
J.-P.
,
Wagner
,
V.
, and
Neveu
,
P.
,
2000
, “
Bayesian Nonlinear Model Selection and Neural Networks: A Conjugate Prior Approach
,”
IEEE Trans. Neural Netw.
,
11
(
2
), pp.
265
278
.
27.
Jospin
,
L. V.
,
Laga
,
H.
,
Boussaid
,
F.
,
Buntine
,
W.
, and
Bennamoun
,
M.
,
2022
, “
Hands-On Bayesian Neural Networks—A Tutorial for Deep Learning Users
,”
IEEE Comput. Intell. Mag.
,
17
(
2
), pp.
29
48
.
28.
Ashukha
,
A.
,
Lyzhov
,
A.
,
Molchanov
,
D.
, and
Vetrov
,
D.
,
2019
, “
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
,”
International Conference on Learning Representations
,
Addis Ababa, Ethiopia
,
Apr. 26–May 1
.
29.
Vadera
,
M. P.
,
Ghosh
,
S.
,
Ng
,
K.
, and
Marlin
,
B. M.
,
2021
, “
Post-Hoc Loss-Calibration for Bayesian Neural Networks
,”
Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence
,
Online
,
July 27–30
, PMLR, pp.
1403
1412
.
30.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,”
International Conference on Learning Representations
,
San Diego, CA
,
May 7–9
.
You do not currently have access to this content.