Abstract

The primary objective of an efficient computer numerical control (CNC) finishing toolpath strategy is to reduce the machining time and maintain desired surface finish (scallop). Among traditional toolpath planning strategies, iso-scallop gives the shortest toolpath while achieving a uniform surface finish. However, it is computationally complex, time-consuming, and sometimes produces topological inconsistencies in regions of high curvature/gradient. This paper presents a novel voxel-based toolpath planning algorithm to address these issues for the three-axis milling of freeform surfaces. Two strategies have been proposed, namely, iso-scallop and hybrid iso-scallop. Gouge-free cutter location (CL) points are initially computed from the voxel-based model, followed by iso-scallop toolpath generation using a binary search algorithm. The hybrid strategy involves region segmentation to generate an adaptive toolpath in high curvature/gradients regions. The overlapping toolpath is stitched and refined to create an efficient iso-scallop-based tool path. The developed system was extensively tested for complex freeform surface parts and was found to be computationally efficient, robust, and accurate in generating a finishing toolpath.

References

1.
Zou
,
Q.
, and
Zhao
,
J.
,
2013
, “
Iso-parametric Tool-Path Planning for Point Clouds
,”
Comput. Aided Des.
,
45
(
11
), pp.
1459
1468
.
2.
Feng
,
H. Y.
, and
Teng
,
Z.
,
2005
, “
Iso-planar Piecewise Linear NC Tool Path Generation From Discrete Measured Data Points
,”
Comput. Aided Des.
,
37
(
1
), pp.
55
64
.
3.
Suresh
,
K.
, and
Yang
,
D. C. H.
,
1994
, “
Constant Scallop-Height Machining of Free-Form Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
116
(
2
), pp.
253
259
.
4.
Liu
,
W.
,
Zhu
,
S. M.
,
Huang
,
T.
, and
Zhou
,
C.
,
2020
, “
An Efficient Iso-Scallop Tool Path Generation Method for Three-Axis Scattered Point Cloud Machining
,”
Int. J. Adv. Manuf. Technol.
,
107
(
7–8
), pp.
3471
3483
.
5.
Feng
,
H., and Li, H.
,
2002
, “
Constant Scallop-Height Tool Path Generation for Three-Axis Sculptured Surface Machining
,”
Comput. Aided Des.
,
34
(
9
), pp.
647
654
.
6.
Lee
,
S. G.
,
Kim
,
H. C.
, and
Yang
,
M. Y.
,
2008
, “
Mesh-Based Tool Path Generation for Constant Scallop-Height Machining
,”
Int. J. Adv. Manuf. Technol.
,
37
(
1–2
), pp.
15
22
.
7.
Yoon
,
J. H.
,
2005
, “
Fast Tool Path Generation by the Iso-Scallop Height Method for Ball-End Milling of Sculptured Surfaces
,”
Int. J. Prod. Res.
,
43
(
23
), pp.
4989
4998
.
8.
Seok Suh
,
Y.
, and
Lee
,
K.
,
1990
, “
NC Milling Tool Path Generation for Arbitrary Pockets Defined by Sculptured Surfaces
,”
Comput. Aided Des.
,
22
(
5
), pp.
273
284
.
9.
Zou
,
Q.
,
Zhang
,
J.
,
Deng
,
B.
, and
Zhao
,
J.
,
2014
, “
Iso-Level Tool Path Planning for Free-Form Surfaces
,”
Comput. Aided Des.
,
53
, pp.
117
125
.
10.
Kudabalage
,
A. E.
, and
Le
,
D.
,
2018
, “
An Iso-Scallop Toolpath Aligned With a Flow of Preferred Directions for 5-Axis Machining
,”
2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS)
,
Bangkok, Thailand
,
Nov. 22–23
, pp.
1
6
.
11.
Han
,
Z.
, and
Yang
,
D. C. H.
,
1999
, “
Iso-Phote Based Tool-Path Generation for Machining Free-Form Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
656
664
.
12.
Dhanda
,
M.
,
Kukreja
,
A.
, and
Pande
,
S. S.
,
2021
, “
Region-Based Efficient Computer Numerical Control Machining Using Point Cloud Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
041005
.
13.
Liu
,
X.
,
Li
,
Y.
,
Ma
,
S.
, and
Lee
,
C. H.
,
2015
, “
A Tool Path Generation Method for Freeform Surface Machining by Introducing the Tensor Property of Machining Strip Width
,”
Comput. Aided Des.
,
66
, pp.
1
13
.
14.
Wang
,
J.
,
Wang
,
Z.
,
Zhu
,
W.
, and
Ji
,
Y.
,
2010
, “
Recognition of Freeform Surface Machining Features
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
4
), p.
041006
.
15.
Giri
,
V.
,
Bezbaruah
,
D.
,
Bubna
,
P.
, and
Choudhury
,
A. R.
,
2005
, “
Selection of Master Cutter Paths in Sculptured Surface Machining by Employing Curvature Principle
,”
Int. J. Mach. Tools Manuf.
,
45
(
10
), pp.
1202
1209
.
16.
Kumazawa
,
G. H.
,
Feng
,
H. Y.
, and
Barakchi Fard
,
M. J.
,
2015
, “
Preferred Feed Direction Field: A New Tool Path Generation Method for Efficient Sculptured Surface Machining
,”
Comput. Aided Des.
,
67–68
, pp.
1
12
.
17.
Xu
,
K.
, and
Li
,
Y.
,
2019
, “
Region Based Five-Axis Tool Path Generation for Freeform Surface Machining Via Image Representation
,”
Rob. Comput. Integr. Manuf.
,
57
(
Nov.
), pp.
230
240
.
18.
Liu
,
X.
,
Li
,
Y.
, and
Li
,
Q.
,
2018
, “
A Region-Based 3 + 2-Axis Machining Toolpath Generation Method for Freeform Surface
,”
Int. J. Adv. Manuf. Technol.
,
97
(
1–4
), pp.
1149
1163
.
19.
Yuan Jia
,
Z.
,
Xuan Zhao
,
X.
,
Wei Ma
,
J.
,
Yu Chen
,
S.
,
Ze Qin
,
F.
, and
Liu
,
Z.
,
2019
, “
Toolpath Generation in Sub-Regional Processing With Constraint of Constant Scallop-Height at Boundary for Complex Curved Surface
,”
Precis. Eng.
,
55
, pp.
217
230
.
20.
Kukreja
,
A.
,
Dhanda
,
M.
, and
Pande
,
S.
,
2022
, “
Voxel-Based Adaptive Toolpath Planning Using GPU for Freeform Surface Machining
,”
ASME J. Manuf. Sci. Eng.
,
144
(
1
), p.
011013
.
21.
Li
,
Y.
,
Tang
,
K.
, and
Zeng
,
L.
,
2020
, “
A Voxel Model-Based Process-Planning Method for Five-Axis Machining of Complicated Parts
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
4
), p.
041012
.
22.
Tarbutton
,
J.
,
Kurfess
,
T. R.
,
Tucker
,
T.
, and
Konobrytskyi
,
D.
,
2013
, “
Gouge-Free Voxel-Based Machining for Parallel Processors
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9–12
), pp.
1941
1953
.
23.
Nie
,
Z.
,
Lynn
,
R.
,
Tucker
,
T.
, and
Kurfess
,
T.
,
2019
, “
Voxel-Based Analysis and Modeling of MRR Computational Accuracy in Milling Process
,”
CIRP J. Manuf. Sci. Technol.
,
27
, pp.
78
92
.
24.
Tarbutton
,
J. A.
,
Kurfess
,
T. R.
, and
Tucker
,
T. M.
,
2010
, “
Graphics Based Path Planning for Multi-Axis Machine Tools
,”
Comput. Aided Des. Appl.
,
7
(
6
), pp.
835
845
.
25.
Shen
,
F.
, and
Tarbutton
,
J.
,
2019
, “
A Voxel Based Automatic Tool Path Planning Approach Using Scanned Data as the Stock
,”
Procedia Manuf.
,
34
(
47
), pp.
26
32
.
26.
Konobrytskyi
,
D.
,
Hossain
,
M. M.
,
Tucker
,
T. M.
,
Tarbutton
,
J. A.
, and
Kurfess
,
T. R.
,
2018
, “
5-Axis Tool Path Planning Based on Highly Parallel Discrete Volumetric Geometry Representation: Part I Contact Point Generation
,”
Comput. Aided Des. Appl.
,
15
(
1
), pp.
76
89
.
27.
Balabokhin
,
A.
, and
Tarbutton
,
J.
,
2017
, “
Iso-Scallop Tool Path Building Algorithm ‘Based on Tool Performance Metric’ for Generalized Cutter and Arbitrary Milling Zones in 3-Axis CNC Milling of Free-Form Triangular Meshed Surfaces
,”
J. Manuf. Process.
,
28
(
3
), pp.
565
572
.
28.
Faas
,
D.
, and
Vance
,
J. M.
,
2011
, “
BREP Identification During Voxel-Based Collision Detection for Haptic Manual Assembly
,”
ASME 2011 World Conference on Innovative Virtual Reality
,
Milan, Italy
,
June 27–29
, pp.
145
153
.
29.
Kukreja
,
A.
,
Dhanda
,
M.
, and
Pande
,
S.
,
2020
, “
Efficient Toolpath Planning for Voxel-Based CNC Rough Machining
,”
Comput. Aided Des. Appl.
,
18
(
2
), pp.
285
296
.
30.
Zhou
,
Y.
, and
Tuzel
,
O.
,
2018
, “
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–23
, pp.
4490
4499
.
31.
Dixit
,
A.
,
2021
, “
Adaptive Kmeans Clustering for Color and Gray Image
,” MATLAB Central File Exchange, [Online], https://www.mathworks.com/matlabcentral/fileexchange/45057-adaptive-kmeans-clustering-for-color-and-gray-image
32.
Kukreja
,
A.
, and
Pande
,
S. S.
,
2019
, “
Estimation of Scallop Height in Freeform Surface CNC Machining
,”
Int. J. Adv. Manuf. Technol.
,
104
(
9–12
), pp.
4231
4242
.
33.
Kızıltug
,
C.
, “
Human Face 1
,” https://grabcad.com/library/human-face-1, Accessed July 20, 2021.
34.
Ranković
,
N.
, “
Car Hood
,” https://grabcad.com/library/car-hood, Accessed July 15, 2021.
35.
Morar
,
A.
,
Moldoveanu
,
F.
,
Moldoveanu
,
A.
, and
Oana Balan
,
V. A.
,
2017
, “
GPU Accelerated 2D and 3D Image Processing
,”
2017 Federated Conference on Computer Science and Information Systems (FedCSIS)
,
Prague, Czech Republic
,
Sept. 3–6
, Vol. 11, pp.
653
656
.
36.
Emamjomeh-Zadeh
,
E.
,
Kempe
,
D.
, and
Singhal
,
V.
,
2016
, “
Deterministic and Probabilistic Binary Search in Graphs
,”
Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing
,
Cambridge, MA
,
June 19–21
, pp.
519
532
.
You do not currently have access to this content.