Abstract

The introduction of the idea of “carbon neutrality” gives the development of low carbon and decarbonization a defined path. Climate change is a significant worldwide concern. To offer a theoretical foundation for the implementation of carbon reduction, this research first analyzes the idea of carbon footprinting, accounting techniques, and supporting technologies. The next section examines carbon emission reduction technologies in terms of lowering emissions and raising carbon sequestration. Digital intelligence technologies like the Internet of Things, big data, and artificial intelligence will be crucial throughout the process of reducing carbon emissions. The implementation pathways for increasing carbon sequestration primarily include ecological and technological carbon sequestration. Nevertheless, proving carbon neutrality requires measuring and monitoring greenhouse gas emissions from several industries, which makes it a challenging undertaking. Intending to increase the effectiveness of carbon footprint measurement, this study created a web-based program for computing and analyzing the whole life cycle carbon footprint of items. The practical applications and difficulties of digital technologies, such as blockchain, the Internet of Things, and artificial intelligence in achieving a transition to carbon neutrality are also reviewed, and additional encouraging research ideas and recommendations are made to support the development of carbon neutrality.

References

1.
Shan
,
S.
,
Genç
,
S. Y.
,
Kamran
,
H. W.
, and
Dinca
,
G.
,
2021
, “
Role of Green Technology Innovation and Renewable Energy in Carbon Neutrality: A Sustainable Investigation From Turkey
,”
J. Environ. Manage.
,
294
, p.
113004
.
2.
De La Peña
,
L.
,
Guo
,
R.
,
Cao
,
X.
,
Ni
,
X.
, and
Zhang
,
W.
,
2022
, “
Accelerating the Energy Transition to Achieve Carbon Neutrality
,”
Resour. Conserv. Recycl.
,
177
, p.
105957
.
3.
International Energy Agency (IEA)
,
2022
, “Global Energy Review: CO2 Emissions in 2021.”
4.
Kyoto Protocol
,
1997
, “
United Nations Framework Convention on Climate Change
,”
Kyoto Protocol
,
19
(
8
), pp.
1
21
.
5.
Siddi
,
M.
,
2020
, “The European Green Deal: Assessing Its Current State and Future Implementation.”
6.
Seddon
,
N.
,
Smith
,
A.
,
Smith
,
P.
,
Key
,
I.
,
Chausson
,
A.
,
Girardin
,
C.
,
House
,
J.
,
Srivastava
,
S.
, and
Turner
,
B.
,
2021
, “
Getting the Message Right on Nature-Based Solutions to Climate Change
,”
Global Change Biol.
,
27
(
8
), pp.
1518
1546
.
7.
Ohta
,
H.
,
2021
, “
Japan’s Policy on Net Carbon Neutrality by 2050
,”
East Asian Pol.
,
13
(
01
), pp.
19
32
.
8.
Zhao
,
X.
,
Ma
,
X.
,
Chen
,
B.
,
Shang
,
Y.
, and
Song
,
M.
,
2022
, “
Challenges Toward Carbon Neutrality in China: Strategies and Countermeasures
,”
Resour. Conserv. Recycl.
,
176
, p.
105959
.
9.
Juarez
,
M. G.
,
Botti
,
V. J.
, and
Giret
,
A. S.
,
2021
, “
Digital Twins: Review and Challenges
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
030802
.
10.
Wu
,
D.
,
Thames
,
J. L.
,
Rosen
,
D. W.
, and
Schaefer
,
D.
,
2013
, “
Enhancing the Product Realization Process With Cloud-Based Design and Manufacturing Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
4
), p.
041004
.
11.
Liu
,
J.
,
Hwang
,
S.
,
Yund
,
W.
,
Neidig
,
J. D.
,
Hartford
,
S. M.
,
Ng Boyle
,
L.
, and
Banerjee
,
A. G.
,
2020
, “
A Predictive Analytics Tool to Provide Visibility Into Completion of Work Orders in Supply Chain Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
3
), p.
031003
.
12.
Runji
,
J. M.
,
Lee
,
Y.-J.
, and
Chu
,
C.-H.
,
2022
, “
User Requirements Analysis on Augmented Reality-Based Maintenance in Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
5
), p.
050901
.
13.
Mardani
,
A.
,
Liao
,
H.
,
Nilashi
,
M.
,
Alrasheedi
,
M.
, and
Cavallaro
,
F.
,
2020
, “
A Multi-Stage Method to Predict Carbon Dioxide Emissions Using Dimensionality Reduction, Clustering, and Machine Learning Techniques
,”
J. Clean. Prod.
,
275
, p.
122942
.
14.
Menad
,
N. A.
,
Hemmati-Sarapardeh
,
A.
,
Varamesh
,
A.
, and
Shamshirband
,
S.
,
2019
, “
Predicting Solubility of CO2 in Brine by Advanced Machine Learning Systems: Application to Carbon Capture and Sequestration
,”
J. CO2 Util.
,
33
, pp.
83
95
.
15.
Lu
,
H.
,
Ma
,
X.
,
Huang
,
K.
, and
Azimi
,
M.
,
2020
, “
Carbon Trading Volume and Price Forecasting in China Using Multiple Machine Learning Models
,”
J. Clean. Prod.
,
249
, p.
119386
.
16.
Wackernagel
,
M.
, and
Rees
,
W.
,
1998
,
Our Ecological Footprint: Reducing Human Impact on the Earth
,
New Society Publishers
,
Cleveland, OH
.
17.
He
,
B.
,
Wu
,
J.
, and
Xiao
,
J.
,
2022
, “
Product Safety Risk Assessment Approach to Sustainable Design
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
10
, pp.
783
788
.
18.
ISO
,
2018
, “Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification.”
19.
Wiedmann
,
T.
, and
Minx
,
J.
,
2008
, “
A Definition of ‘Carbon Footprint’
,”
Ecol. Econ. Res. Trends
,
1
(
2008
), pp.
1
11
.
20.
Hertwich
,
E. G.
, and
Peters
,
G. P.
,
2009
, “
Carbon Footprint of Nations: A Global, Trade-Linked Analysis
,”
Environ. Sci. Technol.
,
43
(
16
), pp.
6414
6420
.
21.
Peters
,
G. P.
,
2010
, “
Carbon Footprints and Embodied Carbon at Multiple Scales
,”
Curr. Opin. Environ. Sustain.
,
2
(
4
), pp.
245
250
.
22.
Druckman
,
A.
, and
Jackson
,
T.
,
2009
, “
The Carbon Footprint of UK Households 1990–2004: A Socio-Economically Disaggregated, Quasi-Multi-Regional Input–Output Model
,”
Ecol. Econ.
,
68
(
7
), pp.
2066
2077
.
23.
Wbcsd
,
W.
,
2004
, “
The Greenhouse Gas Protocol
,”
A Corporate Accounting and Reporting Standard
, Rev. ed.
Washington, DC
,
Conches-Geneva
.
24.
Strutt
,
J.
,
Wilson
,
S.
,
Shorney-Darby
,
H.
,
Shaw
,
A.
, and
Byers
,
A.
,
2008
, “
Assessing the Carbon Footprint of Water Production
,”
J. Am. Water Works Assn.
,
100
(
6
), pp.
80
91
.
25.
Matthews
,
H. S.
,
Hendrickson
,
C. T.
, and
Weber
,
C. L.
,
2008
, “
The Importance of Carbon Footprint Estimation Boundaries
,”
Environ. Sci. Technol.
,
42
(
16
), pp.
5839
5842
.
26.
Steen-Olsen
,
K.
,
Wood
,
R.
, and
Hertwich
,
E. G.
,
2016
, “
The Carbon Footprint of Norwegian Household Consumption 1999–2012
,”
J. Ind. Ecol.
,
20
(
3
), pp.
582
592
.
27.
Huang
,
Y. A.
,
Lenzen
,
M.
,
Weber
,
C. L.
,
Murray
,
J.
, and
Matthews
,
H. S.
,
2009
, “
The Role of Input–Output Analysis for the Screening of Corporate Carbon Footprints
,”
Econ. Syst. Res.
,
21
(
3
), pp.
217
242
.
28.
He
,
B.
,
Liu
,
Y.
,
Zeng
,
L.
,
Wang
,
S.
,
Zhang
,
D.
, and
Yu
,
Q.
,
2019
, “
Product Carbon Footprint Across Sustainable Supply Chain
,”
J. Clean. Prod.
,
241
, p.
118320
.
29.
Ellen MacArthur Foundation
,
2019
, “
Completing the Picture: How the Circular Economy Tackles Climate Change
,”
Mater. Econ.
,
3
, pp.
1
62
.
30.
Pandey
,
D.
,
Agrawal
,
M.
, and
Pandey
,
J. S.
,
2011
, “
Carbon Footprint: Current Methods of Estimation
,”
Environ. Monit. Assess.
,
178
(
1
), pp.
135
160
.
31.
Fujii
,
S.
,
Bamberg
,
S.
,
Friman
,
M.
, and
Gärling
,
T.
,
2009
, “
Are Effects of Travel Feedback Programs Correctly Assessed?
,”
Transportmetrica
,
5
(
1
), pp.
43
57
.
32.
He
,
B.
,
Cao
,
X.
, and
Gu
,
Z.
,
2020
, “
Kinematics of Underactuated Robotics for Product Carbon Footprint
,”
J. Clean. Prod.
,
257
, p.
120491
.
33.
Rangan
,
R. M.
,
Rohde
,
S. M.
,
Peak
,
R.
,
Chadha
,
B.
, and
Bliznakov
,
P.
,
2005
, “
Streamlining Product Lifecycle Processes: A Survey of Product Lifecycle Management Implementations, Directions, and Challenges
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
227
237
.
34.
Peña
,
C.
,
Civit
,
B.
,
Gallego-Schmid
,
A.
,
Druckman
,
A.
,
Pires
,
A. C.
,
Weidema
,
B.
,
Mieras
,
E.
, et al
,
2021
, “
Using Life Cycle Assessment to Achieve a Circular Economy
,”
Int. J. Life Cycle Assess.
,
26
(
2
), pp.
215
220
.
35.
Pranav
,
S.
,
Lahoti
,
M.
,
Shan
,
X.
,
Yang
,
E.-H.
, and
Muthukumar
,
G.
,
2022
, “
Economic Input-Output LCA of Precast Corundum-Blended ECC Overlay Pavement
,”
Resour. Conserv. Recycl.
,
184
, p.
106385
.
36.
Jakobs
,
A.
,
Schulte
,
S.
, and
Pauliuk
,
S.
,
2021
, “
Price Variance in Hybrid-LCA Leads to Significant Uncertainty in Carbon Footprints
,”
Front. Sustain.
,
2
, p.
31
.
37.
Raman
,
A. S.
,
Morris
,
K.
, and
Haapala
,
K. R.
,
2022
, “
Reusing and Extending Standards-Based Unit Manufacturing Process Models for Characterizing Sustainability Performance
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
2
), p.
021005
.
38.
Liao
,
H.
,
Shi
,
Y.
,
Liu
,
X.
,
Shen
,
N.
, and
Deng
,
Q.
,
2019
, “
A Non-Probabilistic Model of Carbon Footprints in Remanufacture Under Multiple Uncertainties
,”
J. Clean. Prod.
,
211
, pp.
1127
1140
.
39.
Cappelletti
,
F.
,
Menghi
,
R.
,
Rossi
,
M.
, and
Germani
,
M.
,
2022
, “
Supply Chain as a Complex System: Environmental Impact Evaluation and Perception
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
6
), p.
064502
.
40.
Delre
,
A.
,
ten Hoeve
,
M.
, and
Scheutz
,
C.
,
2019
, “
Site-Specific Carbon Footprints of Scandinavian Wastewater Treatment Plants, Using the Life Cycle Assessment Approach
,”
J. Clean. Prod.
,
211
, pp.
1001
1014
.
41.
Hashmi
,
N.
,
Jalil
,
S. A.
, and
Javaid
,
S.
,
2021
, “
Carbon Footprint Based Multi-objective Supplier Selection Problem With Uncertain Parameters and Fuzzy Linguistic Preferences
,”
Sustain. Oper. Comput.
,
2
, pp.
20
29
.
42.
Verma
,
S.
,
Dwivedi
,
G.
, and
Verma
,
P.
,
2021
, “
Life Cycle Assessment of Electric Vehicles in Comparison to Combustion Engine Vehicles: A Review
,”
Mater. Today: Proc.
,
49
, pp.
217
222
.
43.
Ogino
,
A.
,
Van Thu
,
N.
,
Hosen
,
Y.
,
Izumi
,
T.
,
Suzuki
,
T.
,
Sakai
,
T.
,
Ando
,
S.
,
Osada
,
T.
, and
Kawashima
,
T.
,
2021
, “
Environmental Impacts of a Rice-Beef-Biogas Integrated System in the Mekong Delta, Vietnam Evaluated by Life Cycle Assessment
,”
J. Environ. Manage.
,
294
, p.
112900
.
44.
Huang
,
H.
, and
Ameta
,
G.
,
2014
, “
A Novel Pattern for Energy Estimation Framework and Tools to Compute Energy Consumption in Product Life Cycle
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
1
), p.
011002
.
45.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Benjamin
,
W.
,
Ramani
,
K.
,
Elmqvist
,
N.
,
Kulkarni
,
D.
, and
Tew
,
J.
,
2015
, “
A Framework for Visualization-Driven Eco-Conscious Design Exploration
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
4
), p.
041010
.
46.
He
,
B.
,
Wu
,
J.
,
Zhu
,
X.
,
Zhang
,
D.
, and
Cao
,
J.
,
2023
, “
Product Multibody Dynamics Analysis for Low-Carbon Footprint
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
2
), p.
021010
.
47.
Devanathan
,
S.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
, and
Ramani
,
K.
,
2010
, “
Integration of Sustainability Into Early Design Through the Function Impact Matrix
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081004
.
48.
Chiang
,
T.-A.
, and
Che
,
Z.
,
2015
, “
A Decision-Making Methodology for Low-Carbon Electronic Product Design
,”
Decis. Support Syst.
,
71
, pp.
1
13
.
49.
Bi
,
L.
,
Zuo
,
Y.
,
Tao
,
F.
,
Liao
,
T. W.
, and
Liu
,
Z.
,
2017
, “
Energy-Aware Material Selection for Product With Multicomponent Under Cloud Environment
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031007
.
50.
Chua
,
P. C.
,
Moon
,
S. K.
,
Ng
,
Y. T.
, and
Ng
,
H. Y.
,
2021
, “
A Surrogate Model to Predict Production Performance in Digital Twin-Based Smart Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
), p.
031007
.
51.
Onan Demirel
,
H.
,
Irshad
,
L.
,
Ahmed
,
S.
, and
Tumer
,
I.Y.
,
2021
, “
Digital Twin-Driven Human-Centered Design Frameworks for Meeting Sustainability Objectives
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031012
.
52.
Jayaram
,
U.
,
Kim
,
Y.
,
Jayaram
,
S.
,
Jandhyala
,
V. K.
, and
Mitsui
,
T.
,
2004
, “
Reorganizing CAD Assembly Models (As-Designed) for Manufacturing Simulations and Planning (As-Built)
,”
ASME J. Comput. Inf. Sci. Eng.
,
4
(
2
), pp.
98
108
.
53.
Qamar
,
A.
,
Paredis
,
C. J. J.
,
Wikander
,
J.
, and
During
,
C.
,
2012
, “
Dependency Modeling and Model Management in Mechatronic Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
4
), p.
041009
.
54.
He
,
B.
,
Li
,
F.
,
Cao
,
X.
, and
Li
,
T.
,
2020
, “
Product Sustainable Design: A Review From the Environmental, Economic, and Social Aspects
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
4
), p.
040801
.
55.
An
,
J.
,
Zou
,
Z.
,
Chen
,
G.
,
Sun
,
Y.
,
Liu
,
R.
, and
Zheng
,
L.
,
2021
, “
An IoT-Based Life Cycle Assessment Platform of Wind Turbines
,”
Sensors
,
21
(
4
), p.
1233
.
56.
He
,
B.
,
Liu
,
L.
, and
Zhang
,
D.
,
2021
, “
Digital Twin-Driven Remaining Useful Life Prediction for Gear Performance Degradation: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
030801
.
57.
Ghita
,
M.
,
Siham
,
B.
,
Hicham
,
M.
, and
Griguer
,
H.
,
2021
, “Digital Twins Based LCA and ISO 20140 for Smart and Sustainable Manufacturing Systems,”
Sustainable Intelligent Systems
,
A.
Joshi
,
A. K.
Nagar
, and
G.
Marín-Raventós
, eds.,
Springer Singapore
,
Singapore
, pp.
101
145
.
58.
Kaewunruen
,
S.
,
Peng
,
S.
, and
Phil-Ebosie
,
O.
,
2020
, “
Digital Twin Aided Sustainability and Vulnerability Audit for Subway Stations
,”
Sustainability
,
12
(
19
), p.
7873
.
59.
Pang
,
X.
,
Lu
,
X.
,
Ding
,
H.
, and
Guerrero
,
J. M.
,
2022
, “
Construction of Smart Grid Load Forecast Model by Edge Computing
,”
Energies
,
15
(
9
), p.
3028
.
60.
Parto
,
M.
,
Urbina Coronado
,
P. D.
,
Saldana
,
C.
, and
Kurfess
,
T.
,
2021
, “
Cyber-Physical System Implementation for Manufacturing With Analytics in the Cloud Layer
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
1
), p.
011011
.
61.
Mor
,
S.
,
Madan
,
S.
, and
Prasad
,
K. D.
,
2021
, “
Artificial Intelligence and Carbon Footprints: Roadmap for Indian Agriculture
,”
Strateg. Change
,
30
(
3
), pp.
269
280
.
62.
Shehab
,
M. J.
,
Kassem
,
I.
,
Kutty
,
A. A.
,
Kucukvar
,
M.
,
Onat
,
N.
, and
Khattab
,
T.
,
2021
, “
5G Networks Towards Smart and Sustainable Cities: A Review of Recent Developments, Applications and Future Perspectives
,”
IEEE Access
,
10
, pp.
2987
3006
.
63.
Whig
,
P.
,
Velu
,
A.
, and
Bhatia
,
A. B.
,
2022
,
Demystifying Federated Learning for Blockchain and Industrial Internet of Things
,
IGI Global
,
Pennsylvania
, pp.
123
142
.
64.
Xu
,
M.
, and
Buyya
,
R.
,
2020
, “
Managing Renewable Energy and Carbon Footprint in Multi-cloud Computing Environments
,”
J. Parallel Distrib. Comput.
,
135
, pp.
191
202
.
65.
Olabi
,
A. G.
,
Wilberforce
,
T.
,
Elsaid
,
K.
,
Sayed
,
E. T.
,
Salameh
,
T.
,
Abdelkareem
,
M. A.
, and
Baroutaji
,
A.
,
2021
, “
A Review on Failure Modes of Wind Turbine Components
,”
Energies
,
14
(
17
), p.
5241
.
66.
Wilberforce
,
T.
, and
Olabi
,
A. G.
,
2020
, “
Design of Experiment (DOE) Analysis of 5-Cell Stack Fuel Cell Using Three Bipolar Plate Geometry Designs
,”
Sustainability
,
12
(
11
), p.
4488
.
67.
Baroutaji
,
A.
,
Wilberforce
,
T.
,
Ramadan
,
M.
, and
Olabi
,
A. G.
,
2019
, “
Comprehensive Investigation on Hydrogen and Fuel Cell Technology in the Aviation and Aerospace Sectors
,”
Renewable Sustainable Energy Rev.
,
106
, pp.
31
40
.
68.
Xu
,
J.
,
Doubrovski
,
E. L.
,
Geraedts
,
J. M. P.
, and
Song
,
Y.
,
2022
, “
Computational Design for Digitally Fabricated 3D Inductive Power Transfer Coils
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
), p.
031014
.
69.
Ilsen
,
R.
,
Meissner
,
H.
, and
Aurich
,
J. C.
,
2017
, “
Optimizing Energy Consumption in a Decentralized Manufacturing System
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021006
.
70.
Li
,
Q.
,
2021
, “
The View of Technological Innovation in Coal Industry Under the Vision of Carbon Neutralization
,”
Int. J. Coal Sci. Technol.
,
8
(
6
), pp.
1197
1207
.
71.
Saikia
,
B. K.
,
Tonkeswar
,
D.
,
Roy
,
S.
,
Narzary
,
B.
,
Dekaboruah
,
H. P.
,
Bordoloi
,
M.
,
Lahkar
,
J.
,
Dipankar
,
N.
, and
Ramaiah
,
D.
,
2020
, “
Process for the Preparation of Blue-Flourescence Emitting Carbon Dots (CDTS) From Sub-Bituminous Tertiary High Sulfur Indian Coals
,”
Google Patents
, p.
61
.
72.
Jiang
,
Y.
,
Duan
,
L.
,
Yang
,
M.
,
Tong
,
Y.
, and
Pang
,
L.
,
2022
, “
Performance Analysis of Tower Solar Aided Coal-Fired Power Plant With Thermal Energy Storage
,”
Appl. Therm. Eng.
,
206
, p.
118101
.
73.
Zhao
,
F.
,
Fan
,
Y.
, and
Zhang
,
S.
,
2021
, “
Assessment of Efficiency Improvement and Emission Mitigation Potentials in China’s Petroleum Refining Industry
,”
J. Clean. Prod.
,
280
, p.
124482
.
74.
Andrews
,
A.
, and
Lattanzio
,
R. K.
,
2013
,
Petroleum Coke: Industry and Environmental Issues
,
Congressional Research Service
,
Washington, DC
.
75.
Veluri
,
P. S.
,
Katchala
,
N.
,
Anandan
,
S.
,
Pramanik
,
M.
,
NarayanSrinivasan
,
K.
,
Ravi
,
B.
, and
Rao
,
T. N.
,
2021
, “
Petroleum Coke as an Efficient Single Carbon Source for High-Energy and High-Power Lithium-Ion Capacitors
,”
Energy Fuels
,
35
(
10
), pp.
9010
9016
.
76.
Saha
,
S.
,
Lakhe
,
P.
,
Mason
,
M. J.
,
Coleman
,
B. J.
,
Arole
,
K.
,
Zhao
,
X.
,
Yakovlev
,
S.
,
Uppili
,
S.
,
Green
,
M. J.
, and
Hule
,
R. A.
,
2021
, “
Sustainable Production of Graphene From Petroleum Coke Using Electrochemical Exfoliation
,”
npj 2D Mater. Appl.
,
5
(
1
), pp.
1
8
.
77.
Raju
,
V. D.
,
Venu
,
H.
,
Subramani
,
L.
, and
Reddy
,
S. R.
,
2020
,
Recent Technologies for Enhancing Performance and Reducing Emissions in Diesel Engines
,
IGI Global
,
Pennsylvania
, pp.
138
158
.
78.
Sakthivel
,
R.
,
Ramesh
,
K.
,
Purnachandran
,
R.
, and
Shameer
,
P. M.
,
2018
, “
A Review on the Properties, Performance and Emission Aspects of the Third Generation Biodiesels
,”
Renew. Sustain. Energy Rev.
,
82
, pp.
2970
2992
.
79.
Smil
,
V.
,
2015
,
Natural Gas: Fuel for the 21st Century
,
John Wiley & Sons
,
Hoboken, NJ
.
80.
Hayhoe
,
K.
,
Kheshgi
,
H. S.
,
Jain
,
A. K.
, and
Wuebbles
,
D. J.
,
2002
, “
Substitution of Natural Gas for Coal: Climatic Effects of Utility Sector Emissions
,”
Clim. Change
,
54
(
1
), pp.
107
139
.
81.
Stephenson
,
E.
,
Doukas
,
A.
, and
Shaw
,
K.
,
2012
, “
Greenwashing Gas: Might a ‘Transition Fuel’ Label Legitimize Carbon-Intensive Natural Gas Development?
,”
Energy Pol.
,
46
, pp.
452
459
.
82.
Kvamme
,
B.
, and
Saeidi
,
N.
,
2021
, “
A Zero Emission Scheme for Producing Energy From Natural Gas Hydrates and Conventional Natural Gas
,”
Petroleum
,
7
(
4
), pp.
364
384
.
83.
Rahimipetroudi
,
I.
,
Rashid
,
K.
,
Yang
,
J. B.
, and
Dong
,
S. K.
,
2021
, “
Development of Environment-Friendly Dual Fuel Pulverized Coal-Natural Gas Combustion Technology for the Co-Firing Power Plant Boiler: Experimental and Numerical Analysis
,”
Energy
,
228
, p.
120550
.
84.
Likhanov
,
V.
, and
Lopatin
,
O.
, “
Improving the Environmental Performance of a Diesel Engine Using Natural Gas and Exhaust Gas Recirculation
,”
J. Phys. Conf. Ser.
,
1399
(
5
), p.
055020
.
85.
Shoar
,
F. H.
,
Najafi
,
B.
, and
Mosavi
,
A.
,
2021
, “
Effects of Triethylene Glycol Mono Methyl Ether (TGME) as a Novel Oxygenated Additive on Emission and Performance of a Dual-Fuel Diesel Engine Fueled With Natural Gas-Diesel/Biodiesel
,”
Energy Rep.
,
7
, pp.
1172
1189
.
86.
Isabela
,
C.
,
Lameirinhas
,
R. A. M.
,
Torres
,
J. P. N.
, and
Fernandes
,
C. A.
,
2021
, “
Comparative Study of the Copper Indium Gallium Selenide (CIGS) Solar Cell With Other Solar Technologies
,”
Sustain. Energy Fuels
,
5
(
8
), pp.
2273
2283
.
87.
dos Santos
,
S. A. A.
,
Torres
,
J. P. N.
,
Fernandes
,
C. A.
, and
Lameirinhas
,
R. A. M.
,
2021
, “
The Impact of Aging of Solar Cells on the Performance of Photovoltaic Panels
,”
Energy Convers. Manage.
,
10
, p.
100082
.
88.
Marques Lameirinhas
,
R. A.
,
Torres
,
J. P. N.
, and
de Melo Cunha
,
J. P.
,
2022
, “
A Photovoltaic Technology Review: History, Fundamentals and Applications
,”
Energies
,
15
(
5
), p.
1823
.
89.
da Silva Ravasco
,
A.
,
Torres
,
J. P. N.
, and
Lameirinhas
,
R.
,
2021
, “
Wearable Photovoltaic Applications as Energy Sources for Everyday Devices
,”
Am. J. Eng. Appl. Sci.
,
14
(
2
), pp.
337
350
.
90.
Aslam
,
A.
,
Mehmood
,
U.
,
Arshad
,
M. H.
,
Ishfaq
,
A.
,
Zaheer
,
J.
,
Khan
,
A. U. H.
, and
Sufyan
,
M.
,
2020
, “
Dye-Sensitized Solar Cells (DSSCs) as a Potential Photovoltaic Technology for the Self-Powered Internet of Things (IoTs) Applications
,”
Sol. Energy
,
207
, pp.
874
892
.
91.
Bahri
,
S.
, and
Purwantiasning
,
A. W.
,
2020
, “
Understanding the Application of Photovoltaic Technology for Public Transportation
,”
Test Eng. Manag.
,
83
, pp.
8497
8507
.
92.
Shiravi
,
A. H.
, and
Firoozzadeh
,
M.
,
2020
, “
Thermodynamic and Environmental Assessment of Mounting Fin at the Back Surface of Photovoltaic Panels
,”
J. Appl. Comput. Mech.
,
7
(
4
), pp.
1956
1963
.
93.
Ghadikolaei
,
S. S. C.
,
2021
, “
Solar Photovoltaic Cells Performance Improvement by Cooling Technology: An Overall Review
,”
Int. J. Hydrogen Energy
,
46
(
18
), pp.
10939
10972
.
94.
Petroleum
,
B.
,
2019
,
BP Statistical Review of World Energy Report
,
BP
,
London, UK
.
95.
Diógenes
,
J. R. F.
,
Rodrigues
,
J. C.
,
Diógenes
,
M. C. F.
, and
Claro
,
J.
,
2020
, “
Overcoming Barriers to Onshore Wind Farm Implementation in Brazil
,”
Energy Pol.
,
138
, p.
111165
.
96.
Bento
,
N.
, and
Fontes
,
M.
,
2019
, “
Emergence of Floating Offshore Wind Energy: Technology and Industry
,”
Renew. Sustain. Energy Rev.
,
99
, pp.
66
82
.
97.
Darwish
,
A. S.
,
Shaaban
,
S.
,
Marsillac
,
E.
, and
Mahmood
,
N. M.
,
2019
, “
A Methodology for Improving Wind Energy Production in Low Wind Speed Regions, With a Case Study Application in Iraq
,”
Comput. Ind. Eng.
,
127
, pp.
89
102
.
98.
Wen
,
Q.
,
He
,
X.
,
Lu
,
Z.
,
Streiter
,
R.
, and
Otto
,
T.
,
2021
, “
A Comprehensive Review of Miniatured Wind Energy Harvesters
,”
Nano Mater. Sci.
,
3
(
2
), pp.
170
185
.
99.
Pata
,
U. K.
, and
Samour
,
A.
,
2022
, “
Do Renewable and Nuclear Energy Enhance Environmental Quality in France? A New EKC Approach With the Load Capacity Factor
,”
Prog. Nucl. Energy
,
149
, p.
104249
.
100.
Majeed
,
M. T.
,
Ozturk
,
I.
,
Samreen
,
I.
, and
Luni
,
T.
,
2022
, “
Evaluating the Asymmetric Effects of Nuclear Energy on Carbon Emissions in Pakistan
,”
Nucl. Eng. Technol.
,
54
(
5
), pp.
1664
1673
.
101.
Suman
,
S.
,
2018
, “
Hybrid Nuclear-Renewable Energy Systems: A Review
,”
J. Clean. Prod.
,
181
, pp.
166
177
.
102.
Pinsky
,
R.
,
Sabharwall
,
P.
,
Hartvigsen
,
J.
, and
O’Brien
,
J.
,
2020
, “
Comparative Review of Hydrogen Production Technologies for Nuclear Hybrid Energy Systems
,”
Prog. Nucl. Energy
,
123
, p.
103317
.
103.
Petrescu
,
F. I. T.
, and
Petrescu
,
R. V. V.
,
2019
, “
Nuclear Hydrogen Structure and Dimensions
,”
Int. J. Hydrogen Energy
,
44
(
21
), pp.
10833
10837
.
104.
El-Emam
,
R. S.
,
Ozcan
,
H.
, and
Zamfirescu
,
C.
,
2020
, “
Updates on Promising Thermochemical Cycles for Clean Hydrogen Production Using Nuclear Energy
,”
J. Clean. Prod.
,
262
, p.
121424
.
105.
Tang
,
W.
,
Tan
,
Q.
, and
Cai
,
R.
, “
Current Situation Analysis of Electrohydrogen Production Under the Background of “Carbon Neutralization”
,”
IOP Conf. Ser. Earth Environ. Sci.
,
983
, p.
012035
.
106.
Hosseini
,
S. E.
, and
Wahid
,
M. A.
,
2020
, “
Hydrogen From Solar Energy, A Clean Energy Carrier From a Sustainable Source of Energy
,”
Int. J. Energy Res.
,
44
(
6
), pp.
4110
4131
.
107.
Schneider
,
S.
,
Bajohr
,
S.
,
Graf
,
F.
, and
Kolb
,
T.
,
2020
, “
State of the Art of Hydrogen Production Via Pyrolysis of Natural Gas
,”
ChemBioEng Rev.
,
7
(
5
), pp.
150
158
.
108.
Abe
,
J. O.
,
Popoola
,
A.
,
Ajenifuja
,
E.
, and
Popoola
,
O.
,
2019
, “
Hydrogen Energy, Economy and Storage: Review and Recommendation
,”
Int. J. Hydrogen Energy
,
44
(
29
), pp.
15072
15086
.
109.
Khayrullina
,
A. G.
,
Blinov
,
D.
, and
Borzenko
,
V.
,
2019
, “
Novel kW Scale Hydrogen Energy Storage System Utilizing Fuel Cell Exhaust Air for Hydrogen Desorption Process From Metal Hydride Reactor
,”
Energy
,
183
, pp.
1244
1252
.
110.
Han
,
G.
,
Kwon
,
Y.
,
Kim
,
J. B.
,
Lee
,
S.
,
Bae
,
J.
,
Cho
,
E.
,
Lee
,
B. J.
,
Cho
,
S.
, and
Park
,
J.
,
2020
, “
Development of a High-Energy-Density Portable/Mobile Hydrogen Energy Storage System Incorporating an Electrolyzer, a Metal Hydride and a Fuel Cell
,”
Appl. Energy
,
259
, p.
114175
.
111.
Colbertaldo
,
P.
,
Agustin
,
S. B.
,
Campanari
,
S.
, and
Brouwer
,
J.
,
2019
, “
Impact of Hydrogen Energy Storage on California Electric Power System: Towards 100% Renewable Electricity
,”
Int. J. Hydrogen Energy
,
44
(
19
), pp.
9558
9576
.
112.
Qiu
,
Y.
,
Zhou
,
S.
,
Gu
,
W.
,
Pan
,
G.
, and
Chen
,
X.
, “
Application Prospect Analysis of Hydrogen Enriched Compressed Natural Gas Technologies Under the Target of Carbon Emission Peak and Carbon Neutrality
,”
Proc. Chin. Soc. Electr. Eng.
,
42
(
4
), pp.
1301
1320
.
113.
Olabi
,
A. G.
,
Onumaegbu
,
C.
,
Wilberforce
,
T.
,
Ramadan
,
M.
,
Abdelkareem
,
M. A.
, and
Al-Alami
,
A. H.
,
2021
, “
Critical Review of Energy Storage Systems
,”
Energy
,
214
, p.
118987
.
114.
More
,
S. M.
,
Kakati
,
J.
,
Pal
,
S.
, and
Saha
,
U. K.
,
2022
, “
Implementation of Soft Computing Techniques in Predicting and Optimizing the Operating Parameters of Compression Ignition Diesel Engines: State-of-the-Art Review, Challenges, and Future Outlook
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
5
), p.
050801
.
115.
Rahman
,
M. M.
,
Oni
,
A. O.
,
Gemechu
,
E.
, and
Kumar
,
A.
,
2020
, “
Assessment of Energy Storage Technologies: A Review
,”
Energy Convers. Manage.
,
223
, p.
113295
.
116.
Salkuti
,
S. R.
, and
Jung
,
C.-M.
,
2018
, “
Comparative Analysis of Storage Techniques for a Grid With Renewable Energy Sources
,”
Int. J. Eng. Technol.
,
7
(
3
), pp.
970
976
.
117.
Abdalla
,
A. N.
,
Nazir
,
M. S.
,
Tao
,
H.
,
Cao
,
S.
,
Ji
,
R.
,
Jiang
,
M.
, and
Yao
,
L.
,
2021
, “
Integration of Energy Storage System and Renewable Energy Sources Based on Artificial Intelligence: An Overview
,”
J. Energy Storage
,
40
, p.
102811
.
118.
Rangel-Martinez
,
D.
,
Nigam
,
K.
, and
Ricardez-Sandoval
,
L. A.
,
2021
, “
Machine Learning on Sustainable Energy: A Review and Outlook on Renewable Energy Systems, Catalysis, Smart Grid and Energy Storage
,”
Chem. Eng. Res. Des.
,
174
, pp.
414
441
.
119.
Gallo
,
A. B.
,
Simões-Moreira
,
J. R.
,
Costa
,
H. K. M.
,
Santos
,
M. M.
, and
Dos Santos
,
E. M.
,
2016
, “
Energy Storage in the Energy Transition Context: A Technology Review
,”
Renew. Sustain. Energy Rev.
,
65
, pp.
800
822
.
120.
Martinez
,
M.
,
Molina
,
M. G.
,
Frack
,
F.
, and
Mercado
,
P. E.
,
2013
, “
Dynamic Modeling, Simulation and Control of Hybrid Energy Storage System Based on Compressed Air and Supercapacitors
,”
IEEE Lat. Am. Trans.
,
11
(
1
), pp.
466
472
.
121.
Wali
,
S. B.
,
Hannan
,
M. A.
,
Reza
,
M. S.
,
Ker
,
P. J.
,
Begum
,
R. A.
,
Abd Rahman
,
M. S.
, and
Mansor
,
M.
,
2021
, “
Battery Storage Systems Integrated Renewable Energy Sources: A Biblio Metric Analysis Towards Future Directions
,”
J. Energy Storage
,
35
, p.
102296
.
122.
Gür
,
T. M.
,
2018
, “
Review of Electrical Energy Storage Technologies, Materials and Systems: Challenges and Prospects for Large-Scale Grid Storage
,”
Energy Environ. Sci.
,
11
(
10
), pp.
2696
2767
.
123.
Krishan
,
O.
, and
Suhag
,
S.
,
2019
, “
An Updated Review of Energy Storage Systems: Classification and Applications in Distributed Generation Power Systems Incorporating Renewable Energy Resources
,”
Int. J. Energy Res.
,
43
(
12
), pp.
6171
6210
.
124.
May
,
G. J.
,
Davidson
,
A.
, and
Monahov
,
B.
,
2018
, “
Lead Batteries for Utility Energy Storage: A Review
,”
J. Energy Storage
,
15
, pp.
145
157
.
125.
Qi
,
X.
,
Wang
,
J.
,
Królczyk
,
G.
,
Gardoni
,
P.
, and
Li
,
Z.
,
2022
, “
Sustainability Analysis of a Hybrid Renewable Power System With Battery Storage for Islands Application
,”
J. Energy Storage
,
50
, p.
104682
.
126.
Torres L.
,
M. A.
,
Lopes
,
L. A. C.
,
Moran T.
,
L. A.
, and
Espinoza C.
,
J. R.
,
2014
, “
Self-Tuning Virtual Synchronous Machine: A Control Strategy for Energy Storage Systems to Support Dynamic Frequency Control
,”
IEEE Trans. Energy Convers.
,
29
(
4
), pp.
833
840
.
127.
Li
,
X.
, and
Wang
,
S.
,
2019
, “
Energy Management and Operational Control Methods for Grid Battery Energy Storage Systems
,”
CSEE J. Power Energy Syst.
,
7
(
5
), pp.
1026
1040
.
128.
Wang
,
W.
,
Lin
,
W.
,
He
,
G.
,
Shi
,
W.
, and
Feng
,
S.
,
2021
, “
Enlightenment of 2021 Texas Blackout to the Renewable Energy Development in China
,”
Proc. CSEE
,
41
(
12
), pp.
4033
4042
.
129.
Brockway
,
A. M.
,
Conde
,
J.
, and
Callaway
,
D.
,
2021
, “
Inequitable Access to Distributed Energy Resources Due to Grid Infrastructure Limits in California
,”
Nat. Energy
,
6
(
9
), pp.
892
903
.
130.
vom Scheidt
,
F.
,
Dong
,
X.
,
Bartos
,
A.
,
Staudt
,
P.
, and
Weinhardt
,
C.
,
2023
, “
Probabilistic Forecasting of Household Loads: Effects of Distributed Energy Technologies on Forecast Quality
,”
Proceedings of the Twelfth ACM International Conference on Future Energy Systems
,
Orlando, FL
,
June 20–23
, pp.
231
238
.
131.
Cao
,
Z.
,
Wang
,
J.
,
Zhao
,
Q.
,
Han
,
Y.
, and
Li
,
Y.
,
2021
, “
Decarbonization Scheduling Strategy Optimization for Electricity-Gas System Considering Electric Vehicles and Refined Operation Model of Power-to-Gas
,”
IEEE Access
,
9
, pp.
5716
5733
.
132.
Nikoobakht
,
A.
,
Aghaei
,
J.
,
Mokarram
,
M. J.
,
Shafie-khah
,
M.
, and
Catalão
,
J. P. S.
,
2021
, “
Adaptive Robust Co-Optimization of Wind Energy Generation, Electric Vehicle Batteries and Flexible AC Transmission System Devices
,”
Energy
,
230
, p.
120781
.
133.
Zhang
,
Y.
,
Wang
,
S.
,
Liu
,
T.
,
Zhang
,
S.
, and
Lu
,
Q.
,
2021
, “
A Traveling-Wave-Based Protection Scheme for the Bipolar Voltage Source Converter Based High Voltage Direct Current (VSC-HVDC) Transmission Lines in Renewable Energy Integration
,”
Energy
,
216
, p.
119312
.
134.
He
,
B.
, and
Yu
,
Q.
,
2021
, “
Product Sustainable Design for Carbon Footprint During Product Life Cycle
,”
J. Eng. Des.
,
32
(
9
), pp.
478
495
.
135.
Narboy
,
K.
,
Faridakhon
,
K.
, and
Shakhzod
,
S.
,
2021
, “
Criteria for Classification of Economic Security Indicators
,”
Int. J. Multicult. Multirelig. Understand.
,
8
(
7
), pp.
120
133
.
136.
Alam
,
M. A.
,
Ahad
,
A.
,
Zafar
,
S.
, and
Tripathi
,
G.
,
2020
, “A Neoteric Smart and Sustainable Farming Environment Incorporating Blockchain-Based Artificial Intelligence Approach,”
Cryptocurrencies and Blockchain Technology Applications
,
Wiley
,
Hoboken, NJ
, pp.
197
213
.
137.
Brito
,
L.
,
Bédère
,
N.
,
Douhard
,
F.
,
Oliveira
,
H.
,
Arnal
,
M.
,
Peñagaricano
,
F.
,
Schinckel
,
A.
,
Baes
,
C. F.
, and
Miglior
,
F.
,
2021
, “
Genetic Selection of High-Yielding Dairy Cattle Toward Sustainable Farming Systems in a Rapidly Changing World
,”
Animal
,
15
, p.
100292
.
138.
Nagarajan
,
D.
,
Varjani
,
S.
,
Lee
,
D.-J.
, and
Chang
,
J.-S.
,
2021
, “
Sustainable Aquaculture and Animal Feed From Microalgae–Nutritive Value and Techno-Functional Components
,”
Renew. Sustain. Energy Rev.
,
150
, p.
111549
.
139.
Adegbeye
,
M. J.
,
Elghandour
,
M. M.
,
Monroy
,
J. C.
,
Abegunde
,
T. O.
,
Salem
,
A. Z.
,
Barbabosa-Pliego
,
A.
, and
Faniyi
,
T. O.
,
2019
, “
Potential Influence of Yucca Extract as Feed Additive on Greenhouse Gases Emission for a Cleaner Livestock and Aquaculture Farming-A Review
,”
J. Clean. Prod.
,
239
, p.
118074
.
140.
Blandford
,
D.
,
2021
, “
We Should Focus on Food Consumption to Reduce Greenhouse Gas Emissions in Agriculture
,”
EuroChoices
,
20
(
2
), pp.
18
22
.
141.
Vermeir
,
I.
,
Weijters
,
B.
,
De Houwer
,
J.
,
Geuens
,
M.
,
Slabbinck
,
H.
,
Spruyt
,
A.
,
Van Kerckhove
,
A.
,
Van Lippevelde
,
W.
,
De Steur
,
H.
, and
Verbeke
,
W.
,
2020
, “
Environmentally Sustainable Food Consumption: A Review and Research Agenda From a Goal-Directed Perspective
,”
Front. Psychol.
,
11
, p.
1603
.
142.
Sadiq
,
M.
,
Paul
,
J.
, and
Bharti
,
K.
,
2020
, “
Dispositional Traits and Organic Food Consumption
,”
J. Clean. Prod.
,
266
, p.
121961
.
143.
Sarker
,
M. N. I.
,
Islam
,
M. S.
,
Murmu
,
H.
, and
Rozario
,
E.
,
2020
, “
Role of Big Data on Digital Farming
,”
Int. J. Sci. Technol. Res.
,
9
(
4
), pp.
1222
1225
.
144.
Jafari
,
M. A.
,
Zaidan
,
E.
,
Ghofrani
,
A.
,
Mahani
,
K.
, and
Farzan
,
F.
,
2020
, “
Improving Building Energy Footprint and Asset Performance Using Digital Twin Technology
,”
IFAC-PapersOnLine
,
53
(
3
), pp.
386
391
.
145.
Burman
,
E.
,
Jain
,
N.
, and
de-Borja-Torrejón
,
M.
, “
Towards Net-Zero Carbon Performance: Using Demand Side Management and a Low Carbon Grid to Reduce Operational Carbon Emissions in a UK Public Office
,”
J. Phys. Conf. Ser.
,
2069
(
1
), p.
012150
.
146.
Bahtiar
,
T. A.
,
Nurjannah
,
A.
, and
Hadi
,
M.
,
2019
, “
Eco House Design: A House Design to Reducing Carbon Dioxide Emission
,”
KnE Soc. Sci.
,
3
(
21
), pp.
825
834
.
147.
Malmqvist
,
T.
,
Nehasilova
,
M.
,
Moncaster
,
A.
,
Birgisdottir
,
H.
,
Nygaard Rasmussen
,
F.
,
Houlihan Wiberg
,
A.
, and
Potting
,
J.
,
2018
, “
Design and Construction Strategies for Reducing Embodied Impacts From Buildings—Case Study Analysis
,”
Energy Build.
,
166
, pp.
35
47
.
148.
Tabrizikahou
,
A.
, and
Nowotarski
,
P.
,
2021
, “
Mitigating the Energy Consumption and the Carbon Emission in the Building Structures by Optimization of the Construction Processes
,”
Energies
,
14
(
11
), p.
3287
.
149.
Warner
,
K. S.
, and
Wäger
,
M.
,
2019
, “
Building Dynamic Capabilities for Digital Transformation: An Ongoing Process of Strategic Renewal
,”
Long Range Plann.
,
52
(
3
), pp.
326
349
.
150.
Wang
,
Y.
,
Wen
,
Z.
,
Cao
,
X.
, and
Dinga
,
C. D.
,
2022
, “
Is Information and Communications Technology Effective for Industrial Energy Conservation and Emission Reduction? Evidence From Three Energy-Intensive Industries in China
,”
Renew. Sustain. Energy Rev.
,
160
, p.
112344
.
151.
Ness
,
D.
,
Swift
,
J.
,
Ranasinghe
,
D. C.
,
Xing
,
K.
, and
Soebarto
,
V.
,
2015
, “
Smart Steel: New Paradigms for the Reuse of Steel Enabled by Digital Tracking and Modelling
,”
J. Clean. Prod.
,
98
, pp.
292
303
.
152.
Zhang
,
Y.
,
Gu
,
L.
, and
Guo
,
X.
,
2020
, “
Carbon Audit Evaluation System and Its Application in the Iron and Steel Enterprises in China
,”
J. Clean. Prod.
,
248
, p.
119204
.
153.
Sun
,
Y.
,
Tian
,
S.
,
Ciais
,
P.
,
Zeng
,
Z.
,
Meng
,
J.
, and
Zhang
,
Z.
,
2022
, “
Decarbonising the Iron and Steel Sector for a 2 °C Target Using Inherent Waste Streams
,”
Nat. Commun.
,
13
(
1
), pp.
1
8
.
154.
Naqi
,
A.
, and
Jang
,
J. G.
,
2019
, “
Recent Progress in Green Cement Technology Utilizing Low-Carbon Emission Fuels and Raw Materials: A Review
,”
Sustainability
,
11
(
2
), p.
537
.
155.
Chatterjee
,
A. K.
,
2021
, “Process Automation to Autonomous Process in Cement Manufacturing: Basics of Transformational Approach,”
Intelligent and Sustainable Cement Production
,
CRC Press
,
Boca Raton, FL
, pp.
79
98
.
156.
Salhaoui
,
M.
,
Guerrero-González
,
A.
,
Arioua
,
M.
,
Ortiz
,
F. J.
,
El Oualkadi
,
A.
, and
Torregrosa
,
C. L.
,
2019
, “
Smart Industrial IoT Monitoring and Control System Based on UAV and Cloud Computing Applied to a Concrete Plant
,”
Sensors
,
19
(
15
), p.
3316
.
157.
Meng
,
J.
,
Zhong
,
J.
,
Xiao
,
H.
, and
Ou
,
J.
,
2021
, “
Interfacial Design of Nano-TiO2 Modified Fly Ash-Cement Based Low Carbon Composites
,”
Constr. Build. Mater.
,
270
, p.
121470
.
158.
Liao
,
M.
,
Lan
,
K.
, and
Yao
,
Y.
,
2022
, “
Sustainability Implications of Artificial Intelligence in the Chemical Industry: A Conceptual Framework
,”
J. Ind. Ecol.
,
26
(
1
), pp.
164
182
.
159.
Lee
,
R. P.
, and
Scheibe
,
A.
,
2020
, “
The Politics of a Carbon Transition: An Analysis of Political Indicators for a Transformation in the German Chemical Industry
,”
J. Clean. Prod.
,
244
, p.
118629
.
160.
Kaiser
,
S.
, and
Bringezu
,
S.
,
2020
, “
Use of Carbon Dioxide as Raw Material to Close the Carbon Cycle for the German Chemical and Polymer Industries
,”
J. Clean. Prod.
,
271
, p.
122775
.
161.
Zhang
,
X.
,
Jiao
,
K.
,
Zhang
,
J.
, and
Guo
,
Z.
,
2021
, “
A Review on Low Carbon Emissions Projects of Steel Industry in the World
,”
J. Clean. Prod.
,
306
, p.
127259
.
162.
Song
,
Z.-H.
,
Song
,
H.-Y.
, and
Liu
,
H.-T.
,
2021
, “
Effect of Cooling Route on Microstructure and Mechanical Properties of Twin-Roll Casting Low Carbon Steels With an Application of Oxide Metallurgy Technology
,”
Mater. Sci. Eng. A
,
800
, p.
140282
.
163.
Liang
,
C.
,
Chen
,
Y.
,
Wu
,
M.
,
Wang
,
K.
,
Zhang
,
W.
,
Gan
,
Y.
,
Huang
,
H.
, et al
,
2021
, “
Green Synthesis of Graphite From CO2 Without Graphitization Process of Amorphous Carbon
,”
Nat. Commun.
,
12
(
1
), p.
119
.
164.
Adhikari
,
B.
,
Lister
,
T. E.
, and
Reddy
,
R. G.
,
2022
, “
Techno-Economic and Life Cycle Assessment of Aluminum Electrorefining From Mixed Scraps Using Ionic Liquid
,”
Sustain. Prod. Consum.
,
33
, pp.
932
941
.
165.
Gurkan
,
B. E.
,
Qiang
,
Z.
,
Chen
,
Y.-M.
,
Zhu
,
Y.
, and
Vogt
,
B. D.
,
2017
, “
Enhanced Cycle Performance of Quinone-Based Anodes for Sodium Ion Batteries by Attachment to Ordered Mesoporous Carbon and Use of Ionic Liquid Electrolyte
,”
J. Electrochem. Soc.
,
164
(
8
), p.
H5093
.
166.
Durru
,
O.
,
Yessengeldina
,
A.
,
Kosherbayeva
,
A.
, and
Shaikin
,
D.
,
2021
, “
State Policy of Kazakhstan on Implementing of Renewable Energy Sources in Textile Industry Companies
,”
Int. J. Energy Econ. Pol.
,
11
(
3
), pp.
51
56
.
167.
Preetha
,
P.
, and
Kusagur
,
A.
,
2021
, “
Economic Energy Management in Textile Industry Using Meta-Heuristic Algorithms Incorporating Solar Distributed Generation
,”
Int. J. Adv. Technol. Eng. Explor.
,
8
(
85
), p.
1669
.
168.
da Silva
,
C. J. G.
,
de Medeiros
,
A. D. L. M.
,
de Amorim
,
J. D. P.
,
do Nascimento
,
H. A.
,
Converti
,
A.
,
Costa
,
A. F. S.
, and
Sarubbo
,
L. A.
,
2021
, “
Bacterial Cellulose Biotextiles for the Future of Sustainable Fashion: A Review
,”
Environ. Chem. Lett.
,
19
(
4
), pp.
2967
2980
.
169.
Patti
,
A.
,
Cicala
,
G.
, and
Acierno
,
D.
,
2020
, “
Eco-Sustainability of the Textile Production: Waste Recovery and Current Recycling in the Composites World
,”
Polymers
,
13
(
1
), p.
134
.
170.
Amulya
,
K.
,
Katakojwala
,
R.
,
Ramakrishna
,
S.
, and
Mohan
,
S. V.
,
2021
, “
Low Carbon Biodegradable Polymer Matrices for Sustainable Future
,”
Compos., Part C: Open Access
,
4
, p.
100111
.
171.
Becker
,
J.
,
Manske
,
C.
, and
Randl
,
S.
,
2022
, “
Green Chemistry and Sustainability Metrics in the Pharmaceutical Manufacturing Sector
,”
Curr. Opin. Green Sustain. Chem.
,
33
, p.
100562
.
172.
Wang
,
S.
,
Zhang
,
F.
, and
Qin
,
T.
, “
Research on the Construction of Highway Traffic Digital Twin System Based on 3D GIS Technology
,”
J. Phys. Conf. Ser.
,
1802
(
4
), p.
042045
.
173.
Iliashenko
,
O.
,
Iliashenko
,
V.
, and
Lukyanchenko
,
E.
,
2021
, “
Big Data in Transport Modelling and Planning
,”
Transp. Res. Procedia
,
54
, pp.
900
908
.
174.
Wang
,
N.
,
2021
, “
Quick-Change Universal Power Battery for New Energy Vehicles
,”
Google Patents
, p.
630
.
175.
Cai
,
W.
,
Wu
,
X.
,
Zhou
,
M.
,
Liang
,
Y.
, and
Wang
,
Y.
,
2021
, “
Review and Development of Electric Motor Systems and Electric Powertrains for New Energy Vehicles
,”
Automot. Innov.
,
4
(
1
), pp.
3
22
.
176.
Cui
,
Y.
,
Chen
,
R.
,
Chu
,
W.
,
Chen
,
L.
,
Tian
,
D.
,
Li
,
Y.
, and
Cao
,
D.
,
2021
, “
Deep Learning for Image and Point Cloud Fusion in Autonomous Driving: A Review
,”
IEEE Trans. Intell. Transp. Syst.
,
23
(
2
), pp.
722
739
.
177.
Fu
,
P.
,
Pudjianto
,
D.
, and
Strbac
,
G.
,
2020
, “
Integration of Power-to-Gas and Low-Carbon Road Transport in Great Britain’s Future Energy System
,”
IET Renew. Power Gener.
,
14
(
17
), pp.
3393
3400
.
178.
Ferreira
,
A.
,
Pinheiro
,
M. D.
,
de Brito
,
J.
, and
Mateus
,
R.
,
2019
, “
Decarbonizing Strategies of the Retail Sector Following the Paris Agreement
,”
Energy Pol.
,
135
, p.
110999
.
179.
Atitallah
,
S. B.
,
Driss
,
M.
,
Boulila
,
W.
, and
Ghézala
,
H. B.
,
2020
, “
Leveraging Deep Learning and IoT Big Data Analytics to Support the Smart Cities Development: Review and Future Directions
,”
Comput. Sci. Rev.
,
38
, p.
100303
.
180.
Zhang
,
J.
,
Zheng
,
Z.
,
Zhang
,
L.
,
Qin
,
Y.
,
Wang
,
J.
, and
Cui
,
P.
,
2021
, “
Digital Consumption Innovation, Socio-Economic Factors and Low-Carbon Consumption: Empirical Analysis Based on China
,”
Technol. Soc.
,
67
, p.
101730
.
181.
Wilson
,
C.
,
Andrews
,
B.
, and
Vrain
,
E.
,
2022
, “
Consumer Uptake of Digital Low-Carbon Innovations
,”
2022 International Conference on ICT for Sustainability (ICT4S)
,
Plovdiv, Bulgaria
,
June 14–16
, IEEE, pp.
109
118
.
182.
Liao
,
N.
,
Liang
,
P.
, and
He
,
Y.
,
2022
, “
Incentive Contract Design for Embedded Low-Carbon Service Supply Chain Under Information Asymmetry of Carbon Abatement Efficiency
,”
Energy Strategy Rev.
,
42
, p.
100884
.
183.
He
,
B.
,
Li
,
B.
, and
Zhu
,
X.
,
2023
, “
Carbon Footprint Prediction Method for Linkage Mechanism Design
,” Env
iron. Sci. Pollut. Res.
,
30
, pp.
1
18
.
184.
Iwaro
,
J.
, and
Mwasha
,
A.
,
2010
, “
A Review of Building Energy Regulation and Policy for Energy Conservation in Developing Countries
,”
Energy Pol.
,
38
(
12
), pp.
7744
7755
.
185.
Lee
,
C.-C.
,
Hussain
,
J.
, and
Chen
,
Y.
,
2022
, “
The Optimal Behavior of Renewable Energy Resources and Government’s Energy Consumption Subsidy Design From the Perspective of Green Technology Implementation
,”
Renewable Energy
,
195
, pp.
670
680
.
186.
Andor
,
M.
, and
Voss
,
A.
,
2016
, “
Optimal Renewable-Energy Promotion: Capacity Subsidies vs. Generation Subsidies
,”
Resour. Energy Econ.
,
45
, pp.
144
158
.
187.
Maroušek
,
J.
,
Hašková
,
S.
,
Zeman
,
R.
,
Váchal
,
J.
, and
Vaníčková
,
R.
,
2015
, “
Assessing the Implications of EU Subsidy Policy on Renewable Energy in Czech Republic
,”
Clean Technol. Environ. Policy
,
17
(
2
), pp.
549
554
.
188.
Eichner
,
T.
, and
Runkel
,
M.
,
2014
, “
Subsidizing Renewable Energy Under Capital Mobility
,”
J. Public Econ.
,
117
, pp.
50
59
.
189.
Wüstenhagen
,
R.
, and
Bilharz
,
M.
,
2006
, “
Green Energy Market Development in Germany: Effective Public Policy and Emerging Customer Demand
,”
Energy Pol.
,
34
(
13
), pp.
1681
1696
.
190.
Carley
,
S.
,
2011
, “
The Era of State Energy Policy Innovation: A Review of Policy Instruments
,”
Rev. Policy Res.
,
28
(
3
), pp.
265
294
.
191.
Mathews
,
J. A.
, and
Tan
,
H.
,
2014
, “
Economics: Manufacture Renewables to Build Energy Security
,”
Nature
,
513
(
7517
), pp.
166
168
.
192.
Mildenberger
,
M.
,
Lachapelle
,
E.
,
Harrison
,
K.
, and
Stadelmann-Steffen
,
I.
,
2022
, “
Limited Evidence That Carbon Tax Rebates Have Increased Public Support for Carbon Pricing
,”
Nat. Clim. Change
,
12
(
2
), pp.
121
122
.
193.
Best
,
R.
,
Burke
,
P. J.
, and
Jotzo
,
F.
,
2020
, “
Carbon Pricing Efficacy: Cross-Country Evidence
,”
Environ. Resour. Econ.
,
77
(
1
), pp.
69
94
.
194.
Leroutier
,
M.
,
2022
, “
Carbon Pricing and Power Sector Decarbonization: Evidence From the UK
,”
J. Environ. Econ. Manag.
,
111
, p.
102580
.
195.
Rafaty
,
R.
,
Dolphin
,
G.
, and
Pretis
,
F.
,
2020
, “Carbon Pricing and the Elasticity of CO2 Emissions,” p.
341955
.
196.
Green
,
J. F.
,
2021
, “
Does Carbon Pricing Reduce Emissions? A Review of Ex-Post Analyses
,”
Environ. Res. Lett.
,
16
(
4
), p.
043004
.
197.
Stoll
,
C.
, and
Mehling
,
M. A.
,
2021
, “
Climate Change and Carbon Pricing: Overcoming Three Dimensions of Failure
,”
Energy Res. Soc. Sci.
,
77
, p.
102062
.
198.
Zhang
,
Z.
,
Zhang
,
A.
,
Wang
,
D.
,
Li
,
A.
, and
Song
,
H.
,
2017
, “
How to Improve the Performance of Carbon Tax in China?
,”
J. Clean. Prod.
,
142
, pp.
2060
2072
.
199.
Wang-Helmreich
,
H.
, and
Kreibich
,
N.
,
2019
, “
The Potential Impacts of a Domestic Offset Component in a Carbon Tax on Mitigation of National Emissions
,”
Renew. Sustain. Energy Rev.
,
101
, pp.
453
460
.
200.
Barragán-Beaud
,
C.
,
Pizarro-Alonso
,
A.
,
Xylia
,
M.
,
Syri
,
S.
, and
Silveira
,
S.
,
2018
, “
Carbon Tax or Emissions Trading? An Analysis of Economic and Political Feasibility of Policy Mechanisms for Greenhouse Gas Emissions Reduction in the Mexican Power Sector
,”
Energy Pol.
,
122
, pp.
287
299
.
201.
Gianfrate
,
G.
, and
Peri
,
M.
,
2019
, “
The Green Advantage: Exploring the Convenience of Issuing Green Bonds
,”
J. Clean. Prod.
,
219
, pp.
127
135
.
202.
Glomsrød
,
S.
, and
Wei
,
T.
,
2018
, “
Business as Unusual: The Implications of Fossil Divestment and Green Bonds for Financial Flows, Economic Growth and Energy Market
,”
Energy Sustainable Dev.
,
44
, pp.
1
10
.
203.
Cui
,
L.
, and
Huang
,
Y.
,
2018
, “
Exploring the Schemes for Green Climate Fund Financing: International Lessons
,”
World Dev.
,
101
, pp.
173
187
.
204.
Termeer
,
C. J. A. M.
,
Dewulf
,
A.
, and
Biesbroek
,
G. R.
,
2016
, “
Transformational Change: Governance Interventions for Climate Change Adaptation From a Continuous Change Perspective
,”
J. Environ. Plann. Manage.
,
60
(
4
), pp.
558
576
.
205.
Cui
,
L.-B.
,
Zhu
,
L.
,
Springmann
,
M.
, and
Fan
,
Y.
,
2014
, “
Design and Analysis of the Green Climate Fund
,”
J. Syst. Sci. Syst. Eng.
,
23
(
3
), pp.
266
299
.
206.
Grimm
,
J.
,
Weischer
,
L.
, and
Eckstein
,
D.
,
2018
,
The Future Role of the Adaptation Fund in the International Climate Finance Architecture
,
Germanwatch Bonn
,
Berlin, Germany
.
207.
Zhang
,
A.
,
Deng
,
R.
, and
Wu
,
Y.
,
2022
, “
Does the Green Credit Policy Reduce the Carbon Emission Intensity of Heavily Polluting Industries?—Evidence From China’s Industrial Sectors
,”
J. Environ. Manage.
,
311
, p.
114815
.
208.
Nabeeh
,
N. A.
,
Abdel-Basset
,
M.
, and
Soliman
,
G.
,
2021
, “
A Model for Evaluating Green Credit Rating and Its Impact on Sustainability Performance
,”
J. Clean. Prod.
,
280
, p.
124299
.
209.
Ramani
,
V.
,
2020
,
Addressing Climate as a Systemic Risk
,
Ceres
,
Boston
, pp.
2020
2006
.
210.
Eremeev
,
S. G.
,
Belozyorov
,
S. A.
, and
Xie
,
X.
,
2021
, “
China’s Green Insurance System and Functions
,”
E3S Web of Conferences
, p.
311
.
211.
Chen
,
H.
,
Yao
,
M.
, and
Chong
,
D.
,
2019
, “
Research on Institutional Innovation of China’s Green Insurance Investment
,”
J. Ind. Integr. Manag.
,
4
(
01
), p.
1950003
.
212.
Banik
,
B.
,
Deb
,
D.
,
Deb
,
S.
, and
Datta
,
B.
,
2018
, “
Assessment of Biomass and Carbon Stock in Sal (Shorea Robusta Gaertn.) Forests Under Two Management Regimes in Tripura, Northeast India
,”
J. For. Environ. Sci.
,
34
(
3
), pp.
209
223
.
213.
Liu
,
W.-Y.
,
Chiang
,
Y.-H.
, and
Lin
,
C.-C.
,
2022
, “
Adopting Renewable Energies to Meet the Carbon Reduction Target: Is Forest Carbon Sequestration Cheaper?
,”
Energy
,
246
, p.
123328
.
214.
Huang
,
L.
,
Liu
,
J.
,
Shao
,
Q.
, and
Xu
,
X.
,
2012
, “
Carbon Sequestration by Forestation Across China: Past, Present, and Future
,”
Renew. Sustain. Energy Rev.
,
16
(
2
), pp.
1291
1299
.
215.
Kandasamy
,
K.
,
Rajendran
,
N.
,
Balakrishnan
,
B.
,
Thiruganasambandam
,
R.
, and
Narayanasamy
,
R.
,
2021
, “
Carbon Sequestration and Storage in Planted Mangrove Stands of Avicennia Marina
,”
Reg. Stud. Mar. Sci.
,
43
, p.
101701
.
216.
He
,
N.
,
Wen
,
D.
,
Zhu
,
J.
,
Tang
,
X.
,
Xu
,
L.
,
Zhang
,
L.
,
Hu
,
H.
,
Huang
,
M.
, and
Yu
,
G.
,
2017
, “
Vegetation Carbon Sequestration in Chinese Forests From 2010 to 2050
,”
Global Change Biol.
,
23
(
4
), pp.
1575
1584
.
217.
Biswas
,
S.
,
Biswas
,
A.
,
Das
,
A.
, and
Banerjee
,
S.
,
2020
, “
Phytosociological Assessment and Carbon Stock Estimation and Valuation in the Tropical Dry Deciduous Forest of Bihar
,”
Ecofeminism Clim. Change
,
2
(
1
), pp.
2
16
.
218.
Tao
,
F.
,
Palosuo
,
T.
,
Valkama
,
E.
, and
Mäkipää
,
R.
,
2019
, “
Cropland Soils in China Have a Large Potential for Carbon Sequestration Based on Literature Survey
,”
Soil Tillage Res.
,
186
, pp.
70
78
.
219.
Raza
,
S.
,
Zamanian
,
K.
,
Ullah
,
S.
,
Kuzyakov
,
Y.
,
Virto
,
I.
, and
Zhou
,
J.
,
2021
, “
Inorganic Carbon Losses by Soil Acidification Jeopardize Global Efforts on Carbon Sequestration and Climate Change Mitigation
,”
J. Clean. Prod.
,
315
, p.
128036
.
220.
Poeplau
,
C.
, and
Don
,
A.
,
2015
, “
Carbon Sequestration in Agricultural Soils Via Cultivation of Cover Crops—A Meta-Analysis
,”
Agric. Ecosyst. Environ.
,
200
, pp.
33
41
.
221.
Nayak
,
A. K.
,
Rahman
,
M. M.
,
Naidu
,
R.
,
Dhal
,
B.
,
Swain
,
C. K.
,
Nayak
,
A. D.
,
Tripathi
,
R.
,
Shahid
,
M.
,
Islam
,
M. R.
, and
Pathak
,
H.
,
2019
, “
Current and Emerging Methodologies for Estimating Carbon Sequestration in Agricultural Soils: A Review
,”
Sci. Total Environ.
,
665
, pp.
890
912
.
222.
Feng
,
Q.
,
An
,
C.
,
Chen
,
Z.
, and
Wang
,
Z.
,
2020
, “
Can Deep Tillage Enhance Carbon Sequestration in Soils? A Meta-Analysis Towards GHG Mitigation and Sustainable Agricultural Management
,”
Renew. Sustain. Energy Rev.
,
133
, p.
110293
.
223.
Deng
,
L.
,
Shangguan
,
Z.-P.
,
Wu
,
G.-L.
, and
Chang
,
X.-F.
,
2017
, “
Effects of Grazing Exclusion on Carbon Sequestration in China’s Grassland
,”
Earth Sci. Rev.
,
173
, pp.
84
95
.
224.
Deb
,
S.
, and
Mandal
,
B.
,
2021
, “
Soils and Sediments of Coastal Ecology: A Global Carbon Sink
,”
Ocean Coast. Manage.
,
214
, p.
105937
.
225.
Duarte
,
C. M.
,
Middelburg
,
J. J.
, and
Caraco
,
N.
,
2005
, “
Major Role of Marine Vegetation on the Oceanic Carbon Cycle
,”
Biogeosciences
,
2
(
1
), pp.
1
8
.
226.
Gong
,
H.
,
Li
,
Y.
, and
Li
,
S.
,
2021
, “
Effects of the Interaction Between Biochar and Nutrients on Soil Organic Carbon Sequestration in Soda Saline-Alkali Grassland: A Review
,”
Glob. Ecol. Conserv.
,
26
, p.
e01449
.
227.
Yang
,
W.-S.
,
Liu
,
Y.
,
Zhao
,
J.
,
Chang
,
X.
,
Wiesmeier
,
M.
,
Sun
,
J.
,
López-Vicente
,
M.
, et al
,
2021
, “
SOC Changes Were More Sensitive in Alpine Grasslands Than in Temperate Grasslands During Grassland Transformation in China: A Meta-Analysis
,”
J. Clean. Prod.
,
308
, p.
127430
.
228.
Xu
,
S.
,
Liu
,
X.
,
Li
,
X.
, and
Tian
,
C.
,
2019
, “
Soil Organic Carbon Changes Following Wetland Restoration: A Global Meta-Analysis
,”
Geoderma
,
353
, pp.
89
96
.
229.
Mandal
,
A.
,
Dutta
,
A.
,
Das
,
R.
, and
Mukherjee
,
J.
,
2021
, “
Role of Intertidal Microbial Communities in Carbon Dioxide Sequestration and Pollutant Removal: A Review
,”
Mar. Pollut. Bull.
,
170
, p.
112626
.
230.
Farrelly
,
D. J.
,
Everard
,
C. D.
,
Fagan
,
C. C.
, and
McDonnell
,
K. P.
,
2013
, “
Carbon Sequestration and the Role of Biological Carbon Mitigation: A Review
,”
Renew. Sustain. Energy Rev.
,
21
, pp.
712
727
.
231.
Kumar
,
K.
,
Dasgupta
,
C. N.
,
Nayak
,
B.
,
Lindblad
,
P.
, and
Das
,
D.
,
2011
, “
Development of Suitable Photobioreactors for CO2 Sequestration Addressing Global Warming Using Green Algae and Cyanobacteria
,”
Bioresour. Technol.
,
102
(
8
), pp.
4945
4953
.
232.
Liang
,
Z.
,
Rongwong
,
W.
,
Liu
,
H.
,
Fu
,
K.
,
Gao
,
H.
,
Cao
,
F.
,
Zhang
,
R.
, et al
,
2015
, “
Recent Progress and New Developments in Post-Combustion Carbon-Capture Technology With Amine Based Solvents
,”
Int. J. Greenhouse Gas Control
,
40
, pp.
26
54
.
233.
Jiang
,
K.
,
Ashworth
,
P.
,
Zhang
,
S.
,
Liang
,
X.
,
Sun
,
Y.
, and
Angus
,
D.
,
2020
, “
China’s Carbon Capture, Utilization and Storage (CCUS) Policy: A Critical Review
,”
Renew. Sustain. Energy Rev.
,
119
, p.
109601
.
234.
Alivisatos
,
P.
, and
Buchanan
,
M.
,
2010
, “Basic Research Needs for Carbon Capture: Beyond 2020,” USDOE Office of Science (SC).
235.
Yagihara
,
K.
,
Ohno
,
H.
,
Guzman-Urbina
,
A.
,
Ni
,
J.
, and
Fukushima
,
Y.
,
2022
, “
Analyzing Flue Gas Properties Emitted From Power and Industrial Sectors Toward Heat-Integrated Carbon Capture
,”
Energy
,
250
, p.
123775
.
236.
Gür
,
T. M.
,
2022
, “
Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies
,”
Prog. Energy Combust. Sci.
,
89
, p.
100965
.
237.
Saghafifar
,
M.
, and
Gabra
,
S.
,
2020
, “
A Critical Overview of Solar Assisted Carbon Capture Systems: Is Solar Always the Solution?
,”
Int. J. Greenhouse Gas Control
,
92
, p.
102852
.
238.
Nocito
,
F.
, and
Dibenedetto
,
A.
,
2020
, “
Atmospheric CO2 Mitigation Technologies: Carbon Capture Utilization and Storage
,”
Curr. Opin. Green Sustain. Chem.
,
21
, pp.
34
43
.
239.
Buckingham
,
J.
,
Reina
,
T. R.
, and
Duyar
,
M. S.
,
2022
, “
Recent Advances in Carbon Dioxide Capture for Process Intensification
,”
Carbon Capture Sci. Technol.
,
2
, p.
100031
.
240.
Al-Hamed
,
K. H.
, and
Dincer
,
I.
,
2022
, “
Analysis and Economic Evaluation of a Unique Carbon Capturing System With Ammonia for Producing Ammonium Bicarbonate
,”
Energy Convers. Manage.
,
252
, p.
115062
.
241.
Molina-Fernández
,
C.
, and
Luis
,
P.
,
2021
, “
Immobilization of Carbonic Anhydrase for CO2 Capture and Its Industrial Implementation: A Review
,”
J. CO2 Util.
,
47
, p.
101475
.
242.
Talekar
,
S.
,
Jo
,
B. H.
,
Dordick
,
J. S.
, and
Kim
,
J.
,
2022
, “
Carbonic Anhydrase for CO2 Capture, Conversion and Utilization
,”
Curr. Opin. Biotechnol.
,
74
, pp.
230
240
.
243.
Singh
,
G.
,
Lakhi
,
K. S.
,
Sil
,
S.
,
Bhosale
,
S. V.
,
Kim
,
I.
,
Albahily
,
K.
, and
Vinu
,
A.
,
2019
, “
Biomass Derived Porous Carbon for CO2 Capture
,”
Carbon
,
148
, pp.
164
186
.
244.
Sreedhar
,
I.
,
Upadhyay
,
U.
,
Roy
,
P.
,
Thodur
,
S. M.
, and
Patel
,
C. M.
,
2021
, “
Carbon Capture and Utilization by Graphenes-Path Covered and Ahead
,”
J. Clean. Prod.
,
284
, p.
124712
.
245.
Zahed
,
M. A.
,
Movahed
,
E.
,
Khodayari
,
A.
,
Zanganeh
,
S.
, and
Badamaki
,
M.
,
2021
, “
Biotechnology for Carbon Capture and Fixation: Critical Review and Future Directions
,”
J. Environ. Manage.
,
293
, p.
112830
.
246.
Zhang
,
S.
,
Jiang
,
J.
,
Wang
,
H.
,
Li
,
F.
,
Hua
,
T.
, and
Wang
,
W.
,
2021
, “
A Review of Microbial Electrosynthesis Applied to Carbon Dioxide Capture and Conversion: The Basic Principles, Electrode Materials, and Bioproducts
,”
J. CO2 Util.
,
51
, p.
101640
.
247.
Bhatia
,
S. K.
,
Bhatia
,
R. K.
,
Jeon
,
J.-M.
,
Kumar
,
G.
, and
Yang
,
Y.-H.
,
2019
, “
Carbon Dioxide Capture and Bioenergy Production Using Biological System—A Review
,”
Renew. Sustain. Energy Rev.
,
110
, pp.
143
158
.
248.
Kolawole
,
O.
,
Ispas
,
I.
,
Kumar
,
M.
,
Weber
,
J.
,
Zhao
,
B.
, and
Zanoni
,
G.
,
2021
, “
How Can Biogeomechanical Alterations in Shales Impact Caprock Integrity and CO2 Storage?
,”
Fuel
,
291
, p.
120149
.
249.
National Academies of Sciences, Engineering, and Medicine
,
2019
,
Negative Emissions Technologies and Reliable Sequestration: A Research Agenda
,
The National Academies Press
,
Washington, DC
.
250.
Wang
,
D.
,
Noguchi
,
T.
,
Nozaki
,
T.
, and
Higo
,
Y.
,
2021
, “
Investigation on the Fast Carbon Dioxide Sequestration Speed of Cement-Based Materials at 300 °C–700 °C
,”
Constr. Build. Mater.
,
291
, p.
123392
.
251.
Myshakin
,
E. M.
,
Singh
,
H.
,
Sanguinito
,
S.
,
Bromhal
,
G.
, and
Goodman
,
A. L.
,
2019
, “
Flow Regimes and Storage Efficiency of CO2 Injected Into Depleted Shale Reservoirs
,”
Fuel
,
246
, pp.
169
177
.
252.
Ozotta
,
O.
,
Ostadhassan
,
M.
,
Liu
,
K.
,
Liu
,
B.
,
Kolawole
,
O.
, and
Hadavimoghaddam
,
F.
,
2021
, “
Reassessment of CO2 Sequestration in Tight Reservoirs and Associated Formations
,”
J. Pet. Sci. Eng.
,
206
, p.
109071
.
253.
Dai
,
Z.
,
Xu
,
L.
,
Xiao
,
T.
,
McPherson
,
B.
,
Zhang
,
X.
,
Zheng
,
L.
,
Dong
,
S.
, et al
,
2020
, “
Reactive Chemical Transport Simulations of Geologic Carbon Sequestration: Methods and Applications
,”
Earth Sci. Rev.
,
208
, p.
103265
.
254.
Kobayashi
,
H.
,
2004
, “
Climate Change and Future Options for Carbon Sequestration
,”
Foresight
,
6
(
3
), pp.
153
162
.
255.
Khalidy
,
R.
, and
Santos
,
R. M.
,
2021
, “
The Fate of Atmospheric Carbon Sequestrated Through Weathering in Mine Tailings
,”
Miner. Eng.
,
163
, p.
106767
.
256.
He
,
Z.
,
Wang
,
S.
,
Mahoutian
,
M.
, and
Shao
,
Y.
,
2020
, “
Flue Gas Carbonation of Cement-Based Building Products
,”
J. CO2 Util.
,
37
, pp.
309
319
.
257.
Liu
,
Z.
,
Deng
,
Z.
,
He
,
G.
,
Wang
,
H.
,
Zhang
,
X.
,
Lin
,
J.
,
Qi
,
Y.
, and
Liang
,
X.
,
2022
, “
Challenges and Opportunities for Carbon Neutrality in China
,”
Nat. Rev. Earth Environ.
,
3
(
2
), pp.
141
155
.
258.
Li
,
P.
,
Shi
,
T.
,
Bing
,
L.
,
Wang
,
Z.
, and
Xi
,
F.
,
2021
, “
Calculation Method and Model of Carbon Sequestration by Urban Buildings: An Example From Shenyang
,”
J. Clean. Prod.
,
317
, p.
128450
.
259.
Godin
,
J.
,
Liu
,
W.
,
Ren
,
S.
, and
Xu
,
C. C.
,
2021
, “
Advances in Recovery and Utilization of Carbon Dioxide: A Brief Review
,”
J. Environ. Chem. Eng.
,
9
(
4
), p.
105644
.
260.
Zhang
,
S.
,
Zhuang
,
Y.
,
Liu
,
L.
,
Zhang
,
L.
, and
Du
,
J.
,
2020
, “
Optimization-Based Approach for CO2 Utilization in Carbon Capture, Utilization and Storage Supply Chain
,”
Comput. Chem. Eng.
,
139
, p.
106885
.
261.
Omae
,
I.
,
2006
, “
Aspects of Carbon Dioxide Utilization
,”
Catal. Today
,
115
(
1–4
), pp.
33
52
.
262.
Khojasteh-Salkuyeh
,
Y.
,
Ashrafi
,
O.
,
Mostafavi
,
E.
, and
Navarri
,
P.
,
2021
, “
CO2 Utilization for Methanol Production; Part I: Process Design and Life Cycle GHG Assessment of Different Pathways
,”
J. CO2 Util.
,
50
, p.
101608
.
263.
Kim
,
D.
, and
Han
,
J.
,
2020
, “
Techno-Economic and Climate Impact Analysis of Carbon Utilization Process for Methanol Production From Blast Furnace Gas Over Cu/ZnO/Al2O3 Catalyst
,”
Energy
,
198
, p.
117355
.
264.
Saravanan
,
A.
,
Vo
,
D.-V. N.
,
Jeevanantham
,
S.
,
Bhuvaneswari
,
V.
,
Narayanan
,
V. A.
,
Yaashikaa
,
P.
,
Swetha
,
S.
, and
Reshma
,
B.
,
2021
, “
A Comprehensive Review on Different Approaches for CO2 Utilization and Conversion Pathways
,”
Chem. Eng. Sci.
,
236
, p.
116515
.
265.
Jouny
,
M.
,
Hutchings
,
G. S.
, and
Jiao
,
F.
,
2019
, “
Carbon Monoxide Electroreduction as an Emerging Platform for Carbon Utilization
,”
Nat. Catal.
,
2
(
12
), pp.
1062
1070
.
266.
Han
,
S.
,
Jeon
,
S.-I.
,
Lee
,
J.
,
Ahn
,
J.
,
Lee
,
C.
,
Lee
,
J.
, and
Yoon
,
J.
,
2022
, “
Efficient Bicarbonate Removal and Recovery of Ammonium Bicarbonate as CO2 Utilization Using Flow-Electrode Capacitive Deionization
,”
Chem. Eng. J.
,
431
, p.
134233
.
267.
Desport
,
L.
, and
Selosse
,
S.
,
2022
, “
An Overview of CO2 Capture and Utilization in Energy Models
,”
Resour. Conserv. Recycl.
,
180
, p.
106150
.
268.
He
,
B.
,
Qian
,
S.
, and
Li
,
T.
,
2023
, “
Modeling Product Carbon Footprint for Manufacturing Process
,”
J. Clean. Prod.
,
402
, p.
136805
.
269.
Xian
,
X.
,
Zhang
,
D.
,
Lin
,
H.
, and
Shao
,
Y.
,
2022
, “
Ambient Pressure Carbonation Curing of Reinforced Concrete for CO2 Utilization and Corrosion Resistance
,”
J. CO2 Util.
,
56
, p.
101861
.
270.
Valluri
,
S.
,
Claremboux
,
V.
, and
Kawatra
,
S.
,
2022
, “
Opportunities and Challenges in CO2 Utilization
,”
J. Environ. Sci.
,
113
, pp.
322
344
.
271.
He
,
B.
,
Chen
,
W.
,
Li
,
F.
, and
Yuan
,
X.
,
2023
, “
Directed Acyclic Graphs-Based Diagnosis Approach Using Small Data Sets for Sustainability
,”
Comput. Ind. Eng.
,
176
, p.
108944
.
You do not currently have access to this content.