Abstract

In an age of worsening global threat landscape and accelerating uncertainty, the design and manufacture of systems must increase resilience and robustness across both the system itself and the entire systems design process. We generally trust our colleagues after initial clearance/background checks; and systems to function as intended and within operating parameters after safety engineering review, verification, validation, and/or system qualification testing. This approach has led to increased insider threat impacts; thus, we suggest moving to the “trust, but verify” approach embodied by the Zero-Trust paradigm. Zero-Trust is increasingly adopted for network security but has not seen wide adoption in systems design and operation. Achieving the goal of Zero-Trust throughout the systems lifecycle will help to ensure that no single bad actor—whether human or machine learning/artificial intelligence (ML/AI)—can induce failure anywhere in a system’s lifecycle. Additionally, while ML/AI and their associated risks are already entrenched within the operations phase of many systems’ lifecycles, ML/AI is gaining traction during the design phase. For example, generative design algorithms are increasingly popular, but there is less understanding of potential risks. Adopting the Zero-Trust philosophy helps ensure robust and resilient design, manufacture, operations, maintenance, upgrade, and disposal of systems. We outline the rewards and challenges of implementing Zero-Trust and propose the framework for Zero-Trust for the system design lifecycle. This article highlights several areas of ongoing research with focus on high priority areas where the community should focus efforts.

References

1.
Otto
,
K. N.
, and
Wood
,
K. L.
,
2001
,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
Upper Saddle River, NJ
.
2.
Ullman
,
D.
,
2017
,
The Mechanical Design Process
,
David Ullman LLC
,
Redding, CA
.
3.
Muller
,
M. J.
,
Haslwanter
,
J. H.
, and
Dayton
,
T.
,
1997
, “Participatory Practices in the Software Lifecycle,”
Handbook of Human-Computer Interaction
,
M. G.
Helander
,
T. K.
Landauer
, and
P. V.
Prabhu
, eds.,
Elsevier
,
New York, NY
, pp.
255
297
.
4.
Ruparelia
,
N. B.
,
2010
, “
Software Development Lifecycle Models
,”
ACM SIGSOFT Softw. Eng. Notes
,
35
(
3
), pp.
8
13
.
5.
Laukkarinen
,
T.
,
Kuusinen
,
K.
, and
Mikkonen
,
T.
,
2018
, “
Regulated Software Meets Devops
,”
Inform. Softw. Technol.
,
97
, pp.
176
178
.
6.
Stark
,
R.
,
Grosser
,
H.
,
Beckmann-Dobrev
,
B.
, and
Kind
,
S.
,
INPIKO Collaboration
,
2014
, “
Advanced Technologies in Life Cycle Engineering
,”
Procedia CIRP
,
22
, pp.
3
14
.
7.
Miller
,
A.
,
Giachetti
,
R. E.
, and
Van Bossuyt
,
D. L.
,
2022
, “
Challenges of Adopting Devops for the Combat Systems Development Environment
,”
Defense AR J.
,
29
(
1
), pp.
22
49
.
8.
Blanchard
,
B. S.
,
Fabrycky
,
W. J.
, and
Fabrycky
,
W. J.
,
2010
,
Systems Engineering and Analysis
, Vol.
5
,
Prentice Hall
,
Englewood Cliffs, NJ
.
9.
Crawley
,
E.
,
Cameron
,
B.
, and
Selva
,
D.
,
2015
,
System Architecture: Strategy and Product Development for Complex Systems
,
Prentice Hall Press
,
New York City, NY
.
10.
Walden
,
D. D.
,
Roedler
,
G. J.
,
Forsberg
,
K.
,
Hamelin
,
R. D.
, and
Shortell
,
T. M.
, eds.,
2015
,
Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities
, 4th ed.,
Wiley
,
Hoboken, NJ
.
11.
Forsberg
,
K.
, and
Mooz
,
H.
,
1991
, “
The Relationship of System Engineering to the Project Cycle
,”
INCOSE International Symposium
,
Chattanooga, TN
,
Oct. 21–23
, pp.
57
65
.
12.
Forsberg
,
K.
, and
Mooz
,
H.
,
1992
, “
The Relationship of Systems Engineering to the Project Cycle
,”
Eng. Manag. J.
,
4
(
3
), pp.
36
43
.
13.
Marsh
,
S. P.
,
1994
, “
Formalising Trust as a Computational Concept
,” University of Stirling, Stirling, Scotland.
14.
Rose
,
S.
,
Borchert
,
O.
,
Mitchell
,
S.
, and
Connelly
,
S.
,
2020
,
Zero Trust Architecture
, Special Publication 800-207,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
15.
Haber
,
M.
,
2020
,
Privileged Attack Vectors: Building Effective Cyber-Defense Strategies to Protect Organizations
, 2nd ed.,
Springer
,
Berkeley, CA
, pp.
295
304
.
16.
Samaniego
,
M.
, and
Deters
,
R.
,
2018
, “
Zero-Trust Hierarchical Management in IOT
,”
IEEE International Congress on Internet of Things (ICIOT)
,
San Francisco, CA
,
July 2–7
, pp.
88
95
.
17.
Tao
,
Y.
,
Lei
,
Z.
, and
Ruxiang
,
P.
,
2018
, “
Fine-Grained Big Data Security Method Based on Zero Trust Model
,”
2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS)
,
Singapore
,
Dec. 11–13
, pp.
1040
1045
.
18.
Scott
,
B.
,
2018
, “
How a Zero Trust Approach Can Help to Secure Your AWS Environment
,”
Netw. Section
,
2018
(
3
), pp.
5
8
.
19.
ACT-IAC Zero Trust Project Team
,
2019
,
Zero Trust Cybersecurity Current Trends, American Council for Technology-Industry Advisory Council (ACT-IAC)
, https://www.actiac.org/zero-trust-cybersecurity-current-trends.
20.
Embrey
,
B.
,
2020
, “
The Top Three Factors Driving Zero Trust Adoption
,”
Comput. Fraud Secur.
,
2020
(
9
), pp.
13
15
.
21.
Scott
,
B.
,
2018
, “
How a Zero Trust Approach Can Help to Secure Your AWS Environment
,”
Netw. Secur.
,
2018
(
3
), pp.
5
8
.
22.
Dimitrakos
,
T.
,
Dilshener
,
T.
,
Kravtsov
,
A.
,
La Marra
,
A.
,
Martinelli
,
F.
,
Rizos
,
A.
,
Rosetti
,
A.
, and
Saracino
,
A.
,
2020
, “
Trust Aware Continuous Authorization for Zero Trust in Consumer Internet of Things
,”
2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)
,
Guangzhou, China
,
Dec. 29–Jan. 1
, IEEE, pp.
1801
1812
.
23.
Young
,
S. D.
,
2021
, “
Moving the U.S. Government Toward Zero Trust Cybersecurity Principles
,” January, https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf, Accessed December 10, 2022.
24.
U.S. Department of Defense
,
2021
, “Department of Defense Releases Zero Trust Strategy and Roadmap,” https://www.defense.gov/News/Releases/Release/Article/3225919/department-of-defense-releases-zero-trust-strategy-and-roadmap/, Accessed December 10, 2022.
25.
Creswell
,
A.
,
White
,
T.
,
Dumoulin
,
V.
,
Arulkumaran
,
K.
,
Sengupta
,
B.
, and
Bharath
,
A. A.
,
2018
, “
Generative Adversarial Networks: An Overview
,”
IEEE Signal Process. Mag.
,
35
(
1
), pp.
53
65
.
26.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2020
, “
Generative Adversarial Networks
,”
Commun. ACM
,
63
(
11
), pp.
139
144
.
27.
Marcus
,
G.
,
Davis
,
E.
, and
Aaronson
,
S.
,
2022
, “
A Very Preliminary Analysis of DALL-E 2
,” Preprint. arXiv preprint arXiv:2204.13807.
28.
Stöckl
,
A.
,
2022
, “
Evaluating a Synthetic Image Dataset Generated with Stable Diffusion
,” arXiv preprint arXiv:2211.01777.
29.
Borji
,
A.
,
2022
, “
Generated Faces in the Wild: Quantitative Comparison of Stable Diffusion, MidJourney and Dall-e 2
,” arXiv Preprint arXiv:2210.00586.
30.
Srivastava
,
M.
,
2023
, “
A Day in the Life of Chatgpt as a Researcher: Sustainable and Efficient Machine Learning—A Review of Sparsity Techniques and Future Research Directions
,”
OSF Preprints
.
31.
Sobania
,
D.
,
Briesch
,
M.
, and
Rothlauf
,
F.
,
2022
, “
Choose Your Programming Copilot: A Comparison of the Program Synthesis Performance of Github Copilot and Genetic Programming
,”
Proceedings of the Genetic and Evolutionary Computation Conference
,
Boston, MA
,
July 9–13
, pp.
1019
1027
.
32.
Deverall
,
J.
,
Lee
,
J.
, and
Ayala
,
M.
,
2017
,
Using Generative Adversarial Networks to Design Shoes: The Preliminary Steps. Stanford University CS231n: Deep Learning for Computer Vision, Stanford, CA
.
33.
Fan
,
J.
,
Liu
,
T.
,
Li
,
G.
,
Chen
,
J.
,
Shen
,
Y.
, and
Du
,
X.
,
2020
, “
Relational Data Synthesis Using Generative Adversarial Networks: A Design Space Exploration
,” arXiv Preprint arXiv:2008.12763.
34.
Mao
,
Y.
,
He
,
Q.
, and
Zhao
,
X.
,
2020
, “
Designing Complex Architectured Materials With Generative Adversarial Networks
,”
Sci. Adv.
,
6
(
17
), p.
eaaz4169
.
35.
Epstein
,
Z.
,
Levine
,
S.
,
Rand
,
D. G.
, and
Rahwan
,
I.
,
2020
, “
Who Gets Credit for AI-Generated Art?
,”
Iscience
,
23
(
9
), p.
101515
.
36.
Roose
,
K.
,
2022
, “
An AI-Generated Picture Won an Art Prize. Artists Aren’t Happy
,” The New York Times, 2, p.
2022
.
37.
Alqahtani
,
H.
,
Kavakli-Thorne
,
M.
, and
Kumar
,
G.
,
2021
, “
Applications of Generative Adversarial Networks (GANS): An Updated Review
,”
Arch. Comput. Methods Eng.
,
28
(
2
), pp.
525
552
.
38.
Huang
,
H.
,
He
,
R.
,
Sun
,
Z.
, and
Tan
,
T.
,
2019
, “
Wavelet Domain Generative Adversarial Network for Multi-Scale Face Hallucination
,”
Int. J. Comput. Vision
,
127
(
6
), pp.
763
784
.
39.
Shmelkov
,
K.
,
Schmid
,
C.
, and
Alahari
,
K.
,
2018
, “
How Good Is My Gan?
Proceedings of the European Conference on Computer Vision (ECCV)
,
Munich, Germany
,
Sept. 8–14
, pp.
213
229
.
40.
Cherian
,
A.
, and
Sullivan
,
A.
,
2019
, “
Sem-Gan: Semantically-Consistent Image-to-Image Translation
,”
2019 IEEE Winter Conference on Applications of Computer Vision (WACV)
,
Waikoloa Village, HI
,
Jan. 7–11
, IEEE, pp.
1797
1806
.
41.
Hale
,
B.
,
Van Bossuyt
,
D. L.
,
Papakonstantinou
,
N.
, and
O’Halloran
,
B.
,
2021
, “
A Zero-Trust Methodology for Security of Complex Systems With Machine Learning Components
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Online, Virtual
,
Aug. 17–19
, Vol. 85376, American Society of Mechanical Engineers, p. V002T02A067.
42.
Matsuyama
,
L.
,
Zimmerman
,
R.
,
Eaton
,
C.
,
Weger
,
K.
,
Mesmer
,
B.
,
Tenhundfeld
,
N.
,
Van Bossuyt
,
D.
, and
Semmens
,
R.
,
2021
, “
Determinants That Are Believed to Influence the Acceptance and Adoption of Mission Critical Autonomous Systems
,”
AIAA Scitech 2021 Forum
,
Virtual
,
Jan. 11–15 and 19–21
, p.
1156
.
43.
Flynn
,
M.
,
Smitherman
,
H. M.
,
Weger
,
K.
,
Mesmer
,
B.
,
Semmens
,
R.
,
Van Bossuyt
,
D.
, and
Tenhundfeld
,
N. L.
,
2021
, “
Incentive Mechanisms for Acceptance and Adoption of Automated Systems
,”
2021 Systems and Information Engineering Design Symposium (SIEDS)
,
Virtual
,
Apr. 30
, IEEE, pp.
1
6
.
44.
Weger
,
K.
,
Matsuyama
,
L.
,
Zimmermann
,
R.
,
Mesmer
,
B.
,
Van Bossuyt
,
D.
,
Semmens
,
R.
, and
Eaton
,
C.
,
2023
, “
Insight Into User Acceptance and Adoption of Autonomous Systems in Mission Critical Environments
,”
Int. J. Hum. Comput. Interact.
,
39
(
7
), pp.
1423
1437
.
45.
Schwalb
,
J.
,
Menon
,
V.
,
Tenhundfeld
,
N.
,
Weger
,
K.
,
Mesmer
,
B.
, and
Gholston
,
S.
,
2022
, “
A Study of Drone-Based AI for Enhanced Human-AI Trust and Informed Decision Making in Human-AI Interactive Virtual Environments
,”
IEEE 3rd International Conference on Human-Machine Systems (ICHMS)
,
Orlando, FL
,
Nov. 17–19
, pp.
1
6
.
46.
Papakonstantinou
,
N.
,
Van Bossuyt
,
D. L.
,
Linnosmaa
,
J.
,
Hale
,
B.
, and
O’Halloran
,
B.
,
2021
, “
A Zero Trust Hybrid Security and Safety Risk Analysis Method
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
5
), p.
050907
.
47.
Papakonstantinou
,
N.
,
Hale
,
B.
,
Linnosmaa
,
J.
,
Salonen
,
J.
, and
Van Bossuyt
,
D. L.
,
2022
, “
Model Driven Engineering for Resilience of Systems With Black Box and AI-Based Components
,”
Annual Reliability and Maintainability Symposium (RAMS)
,
Tucson, AZ
,
Jan. 24–27
.
48.
Estefan
,
J. A.
,
2007
, “
Survey of Model-Based Systems Engineering (mbse) Methodologies
,”
Incose MBSE Focus Group
,
25
(
8
), pp.
1
12
.
49.
Long
,
D.
, and
Scott
,
Z.
,
2012
,
A Primer for Model-Based Systems Engineering
,
Lulu. com
.
50.
Friedenthal
,
S.
,
Moore
,
A.
, and
Steiner
,
R.
,
2014
,
A Practical Guide to SysML: The Systems Modeling Language
,
Morgan Kaufmann
,
Burlington, MA
.
51.
Bickford
,
J.
,
Van Bossuyt
,
D. L.
,
Beery
,
P.
, and
Pollman
,
A.
,
2020
, “
Operationalizing Digital Twins Through Model-Based Systems Engineering Methods
,”
Syst. Eng.
,
23
(
6
), pp.
724
750
.
52.
Lee
,
E. B. K.
,
Van Bossuyt
,
D. L.
, and
Bickford
,
J. F.
,
2021
, “
Digital Twin-Enabled Decision Support in Mission Engineering and Route Planning
,”
Systems
,
9
(
4
), p.
82
.
53.
Guin
,
U.
,
Huang
,
K.
,
DiMase
,
D.
,
Carulli
,
J. M.
,
Tehranipoor
,
M.
, and
Makris
,
Y.
,
2014
, “
Counterfeit Integrated Circuits: A Rising Threat in the Global Semiconductor Supply Chain
,”
Proc. IEEE
,
102
(
8
), pp.
1207
1228
.
54.
Zhang
,
J.
, and
Ge
,
M.
,
2011
, “
A Study of an Anti-Counterfeiting Fiber With Spectral Fingerprint Characteristics
,”
J. Textile I nst.
,
102
(
9
), pp.
767
773
.
55.
Stradley
,
J.
, and
Karraker
,
D.
,
2006
, “
The Electronic Part Supply Chain and Risks of Counterfeit Parts in Defense Applications
,”
IEEE Trans. Compon. Packaging Manuf. Technol.
,
29
(
3
), pp.
703
705
.
56.
Giachetti
,
R.
,
2016
,
Design of Enterprise Systems: Theory, Architecture, and Methods
,
CRC Press
,
Boca Raton, FL
.
57.
Stone
,
R. B.
, and
Wood
,
K. L.
,
1999
, “
Development of a Functional Basis for Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Las Vegas, NV
,
Sept. 12–16
, Vol. 19739, American Society of Mechanical Engineers, pp.
261
275
.
58.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
59.
Langford
,
G. O.
,
2012
,
Engineering Systems Integration: Theory, Metrics, and Methods
,
CRC Press
,
Boca Raton, FL
.
60.
Langford
,
G.
, and
Langford
,
T.
,
2017
, “
The Making of a System of Systems: Ontology Reveals the True Nature of Emergence
,”
2017 12th System of Systems Engineering Conference (SoSE)
,
Waikoloa, HI
,
June 18–21
, IEEE, pp.
1
5
.
61.
Papakonstantinou
,
N.
,
Van Bossuyt
,
D. L.
,
Linnosmaa
,
J.
,
Hale
,
B.
, and
O’Halloran
,
B.
,
2020
, “
Towards a Zero Trust Hybrid Security and Safety Risk Analysis Method
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual/Online
,
Aug. 17–19
.
62.
Collier
,
Z. A.
, and
Sarkis
,
J.
,
2021
, “
The Zero Trust Supply Chain: Managing Supply Chain Risk in the Absence of Trust
,”
Int. J. Prod. Res.
,
59
(
11
), pp.
3430
3445
.
63.
Sanders
,
G.
,
Morrow
,
T.
,
Richmond
,
N.
, and
Woody
,
C.
,
2021
,
Integrating Zero Trust and DevSecOps. Accession Number: AD1145432. Carnegie Mellon University. Pittsburgh, PA
.
64.
Giray
,
G.
,
2021
, “
A Software Engineering Perspective on Engineering Machine Learning Systems: State of the Art and Challenges
,”
J. Syst. Softw.
,
180
, p.
111031
.
65.
Ishimatsu
,
T.
,
Leveson
,
N. G.
,
Thomas
,
J.
,
Katahira
,
M.
,
Miyamoto
,
Y.
, and
Nakao
,
H.
,
2010
, “
Modeling and Hazard Analysis Using STPA
,”
Proceedings of the 4th International Association for the Advancement of Space Safety (IAASS)
,
Huntsville, AL
,
May 19–21
.
66.
Abdulkhaleq
,
A.
,
Wagner
,
S.
, and
Leveson
,
N.
,
2015
, “A Comprehensive Safety Engineering Approach for Software-Intensive Systems Based on STPA,”
Procedia. Eng.
, Vol.
128
,
Elsevier
,
Amsterdam, Netherlands
, pp.
2
11
.
67.
Liu
,
Y.
,
Ma
,
S.
,
Aafer
,
Y.
,
Lee
,
W.-C.
,
Zhai
,
J.
,
Wang
,
W.
, and
Zhang
,
X.
,
2018
, “
Trojaning Attack on Neural Networks
,”
Network and Distributed System Security Symposium
,
San Diego, CA
,
Feb. 18–21
.
68.
Shejwalkar
,
V.
, and
Houmansadr
,
A.
,
2021
, “
Manipulating the Byzantine: Optimizing Model Poisoning Attacks and Defenses for Federated Learning
,”
Network and Distributed System Security Symposium
,
Virtual
,
Feb. 21–25
.
69.
Gao
,
Y.
,
Xu
,
C.
,
Wang
,
D.
,
Chen
,
S.
,
Ranasinghe
,
D. C.
, and
Nepal
,
S.
,
2019
, “
Strip: a Defence Against Trojan Attacks on Deep Neural Networks
,”
Proceedings of the 35th Annual Computer Security Applications Conference
,
San Juan, Puerto Rico
,
Dec. 9–13
.
70.
Wang
,
B.
,
Yao
,
Y.
,
Shan
,
S.
,
Li
,
H.
,
Viswanath
,
B.
,
Zheng
,
H.
, and
Zhao
,
B. Y.
,
2019
, “
Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks
,”
2019 IEEE Symposium on Security and Privacy (SP)
,
San Francisco, CA
,
May 20–22
, pp.
707
723
.
71.
do Amaral
,
T. M. S.
, and
Gondim
,
J. J. C.
,
2021
, “
Integrating Zero Trust in the Cyber Supply Chain Security
,”
2021 Workshop on Communication Networks and Power Systems (WCNPS)
,
Fortaleza, Brazil
,
Nov. 17–18
, IEEE, pp.
1
6
.
72.
Aarland
,
M.
, and
Gjøsæter
,
T.
,
2022
, “
Digital Supply Chain Vulnerabilities in Critical Infrastructure: A Systematic Literature Review on Cybersecurity in the Energy Sector
,”
International Conference on Information Systems Security and Privacy (ICISSP)
,
Virtual/Online
,
Feb. 9–11
, pp.
326
333
.
73.
Paul
,
B.
, and
Rao
,
M.
,
2022
, “
Zero-Trust Model for Smart Manufacturing Industry
,”
Appl. Sci.
,
13
(
1
), p.
221
.
74.
Buras
,
B.
,
Xanthopoulos
,
C.
,
Butler
,
K.
, and
Kim
,
J.
,
2022
, “
Zero Trust Approach to IC Manufacturing and Testing
,”
2022 IEEE International Test Conference (ITC)
,
Anaheim, CA
,
Sept. 23–30
, IEEE, pp.
583
586
.
75.
Khemani
,
V.
,
Azarian
,
M. H.
, and
Pecht
,
M. G.
,
2021
, “
Prognostics and Secure Health Management of Electronic Systems in a Zero-Trust Environment
,”
Annual Conference of the PHM Society
, Vol.
13
.
76.
Mao
,
Y.
,
Ma
,
Z.
,
Gao
,
S.
,
Li
,
L.
,
Yuan
,
B.
,
Chai
,
B.
,
He
,
P.
, and
Liu
,
X.
,
2022
, “
A Method of Embedded Computer Degradation Trend Prediction
,”
2022 5th International Conference on Pattern Recognition and Artificial Intelligence (PRAI)
,
Chengdu, China
,
Aug. 19–21
, IEEE, pp.
1338
1343
.
77.
Pakmehr
,
M.
,
Khamvilai
,
T.
,
Behbahani
,
A. R.
,
Costello
,
J.
,
Skertic
,
R.
, and
Ademola
,
A. P.
,
2022
, “
Applying Zero Trust Principles to Distributed Embedded Engine Control Systems
,”
AIAA AVIATION 2022 Forum
,
Chicago, IL
,
June 27–July 1
, p.
3480
.
78.
Sellitto
,
G. P.
,
Aranha
,
H.
,
Masi
,
M.
, and
Pavleska
,
T.
,
2021
, “
Enabling a Zero Trust Architecture in Smart Grids Through a Digital Twin
,”
European Dependable Computing Conference
,
Munich, Germany
,
Sept. 13–16
, Springer, pp.
73
81
.
79.
Kismul
,
A.
,
Al-Khateeb
,
H.
, and
Jahankhani
,
H.
,
2023
, “A Critical Review of Digital Twin Confidentiality in a Smart City,”
Cybersecurity in the Age of Smart Societies
,
H.
Jahankhani
, ed.,
Proceedings of the 14th International Conference on Global Security, Safety and Sustainability
,
London
, pp.
437
450
.
80.
Van Bossuyt
,
D. L.
,
Hale
,
B.
,
Arlitt
,
R. M.
, and
Papakonstantinou
,
N.
,
2022
, “
Multi-mission Engineering With Zero Trust: A Modeling Methodology and Application to Contested Offshore Wind Farms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
, Vol. 86212, American Society of Mechanical Engineers, p. V002T02A058.
81.
Golden
,
D.
,
2017
,
Spy Schools: How the CIA, FBI, and Foreign Intelligence Secretly Exploit America’s Universities
,
Henry Holt and Company
,
New York
.
82.
Rigby
,
K. A.
,
2013
,
Aircraft Systems Integration of Air-Launched Weapons
,
John Wiley & Sons
,
Hoboken, NJ
.
83.
Baxter
,
D.
,
Gao
,
J.
,
Case
,
K.
,
Harding
,
J.
,
Young
,
B.
,
Cochrane
,
S.
, and
Dani
,
S.
,
2007
, “
An Engineering Design Knowledge Reuse Methodology Using Process Modelling
,”
Res. Eng. Des.
,
18
(
1
), pp.
37
48
.
84.
Yang
,
L.
,
Cormican
,
K.
, and
Yu
,
M.
,
2019
, “
Ontology-Based Systems Engineering: A State-of-the-Art Review
,”
Comput. Indust.
,
111
, pp.
148
171
.
85.
Bohm
,
M. R.
,
Stone
,
R. B.
, and
Szykman
,
S.
,
2005
, “
Enhancing Virtual Product Representations for Advanced Design Repository Systems
,”
ASME JCISE
,
5
(
4
), pp.
360
372
.
86.
Hoffmann
,
T.
, and
Prause
,
G.
,
2018
, “
On the Regulatory Framework for Last-Mile Delivery Robots
,”
Machines
,
6
(
3
), p.
33
.
87.
Levander
,
O.
,
2017
, “
Autonomous Ships on the High Seas
,”
IEEE Spectrum
,
54
(
2
), pp.
26
31
.
88.
Mogili
,
U. R.
, and
Deepak
,
B.
,
2018
, “
Review on Application of Drone Systems in Precision Agriculture
,”
Procedia Comput. Sci.
,
133
, pp.
502
509
.
89.
Singh
,
S.
,
Singh
,
G.
,
Prakash
,
C.
, and
Ramakrishna
,
S.
,
2020
, “
Current Status and Future Directions of Fused Filament Fabrication
,”
J. Manuf. Process.
,
55
, pp.
288
306
.
90.
Steuben
,
J.
,
Van Bossuyt
,
D. L.
, and
Turner
,
C.
,
2015
, “
Design for Fused Filament Fabrication Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, Vol. 57113, American Society of Mechanical Engineers, p. V004T05A050.
91.
Jones
,
R.
,
Haufe
,
P.
,
Sells
,
E.
,
Iravani
,
P.
,
Olliver
,
V.
,
Palmer
,
C.
, and
Bowyer
,
A.
,
2011
, “
Reprap–the Replicating Rapid Prototyper
,”
Robotica
,
29
(
1
), pp.
177
191
.
You do not currently have access to this content.