Abstract

Cyber-physical-social systems (CPSS) are natural extensions of cyber-physical systems that add the consideration of human interactions and cooperation with cyber systems and physical systems. CPSS are becoming increasingly important as we face challenges such as regulating our impact on the environment, eradicating disease, transitioning to digital and sustainable manufacturing, and improving healthcare. Human stakeholders in these systems are integral to the effectiveness of these systems. One of the key features of CPSS is that the form, structure, and interactions constantly evolve to meet changes in the environment. Designing evolving CPSS includes making tradeoffs amongst the cyber, the physical, and the social systems. Advances in computing and information science have given us opportunities to ask difficult and important questions, especially those related to cyber-physical-social systems. In this paper, we identify research opportunities worth investigating. We start with theoretical and mathematical frameworks for identifying and framing the problem—specifically, problem identification and formulation, data management, CPSS modeling, and CPSS in action. Then we discuss issues related to the design of CPSS including decision-making, computational platform support, and verification and validation. Building on this foundation, we suggest a way forward.

References

1.
Yilma
,
B. A.
,
Panetto
,
H.
, and
Naudet
,
Y.
,
2021
, “
Systematic Formalization of Cyber-Physical-Social System (CPSS): A Systematic Literature Review
,”
Comput. Ind.
,
129
, p.
103458
.
2.
Churchman
,
C.
,
1967
, “
Guest Editorial: Wicked Problems
,”
Manage. Sci.
,
14
(
4
), pp.
B141
B142
.
3.
Schwenk
,
C. R.
,
1984
, “
Cognitive Simplification Processes in Strategic Decision Making
,”
Strateg. Manag. J.
,
5
(
2
), pp.
111
128
.
4.
Schwenk
,
C.
,
1988
, “
The Cognitive Perspective of Strategic Decision Making
,”
J. Manage. Stud.
,
25
(
1
), pp.
41
55
.
5.
Bhalerao
,
M.
,
Honeycutt
,
W.
,
Das
,
A.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2023
, “
Framing Wicked Problems Through Evidentiary and Interpretive Analysis
,”
ASME Design Automation Conference
,
ASME
, Paper No. DETC2023-117285.
6.
Kamala
,
V.
,
Das
,
A.
,
Sharma
,
A.
,
Allen
,
J.
, and
Mistree
,
F.
,
2022
, “
A Method for Social Entrepreneurs to Develop Value Propositions for Sustainable Development
,”
Int. J. Sustain. Dev. Plan.
,
17
(
8
), pp.
2347
2356
.
7.
Elbanna
,
S.
,
Thanos
,
I.
, and
Jansen
,
R.
,
2020
, “
A Literature Review of the Strategic Decision-Making Context: A Synthesis of Previous Mixed Findings and an Agenda for the Way Forward
,”
Management
,
23
(
2
), pp.
42
60
.
8.
El Emam
,
K.
,
Mosquera
,
L.
, and
Hoptroff
,
R.
,
2020
,
Practical Synthetic Data Generation: Balancing Privacy and the Broad Availability of Data
,
O’Reilly Media
,
Sebastopol, CA
.
9.
Buttfield-Addison
,
P.
,
Buttfield-Addison
,
M.
,
Nugent
,
T.
, and
Manning
,
J.
,
2022
,
Practical Simulations for Machine Learning
,
O’Rielly Media
,
Sebastopol, CA
.
10.
Lu
,
Y.
,
Wag
,
H.
, and
Wei
,
W.
,
2023
, “
Machine Learning for Synthetic Data Generation: A Review
,” arXiv:2302.04062v2 [cs.LG], March 29, 2023.
11.
Mehrabi
,
N.
,
Morstatter
,
F.
,
Saxena
,
N.
,
Lerman
,
K.
, and
Galstyan
,
A.
,
2021
, “
A Survey of Bias and Fairness in Machine Learning
,” arXiv:1908.9635.v1903.
12.
Hogan
,
A.
,
Blomqvist
,
E.
,
Cochez
,
M.
,
D'Amato
,
C.
,
De Melo
,
G.
,
Gutierrez
,
C.
,
Kirrane
,
S.
, et al
,
2021
, “
Knowledge Graph
,”
ACM Comput. Surv.
,
54
(
4
), pp.
1
37
.
Article No. 71
.
13.
Ji
,
S.
,
Pan
,
S.
,
Cambria
,
E.
,
Marrttinen
,
P.
, and
Yu
,
P.
,
2021
, “
A Survey on Knowledge Graphs: Representation, Acquisition and Applications
,” arXiv:2002:00388v00384.
14.
Khaneman
,
D.
,
2011
,
Thinking Fast and Slow
,
Farrar, Straus and Giroux
,
New York, NY
.
15.
Allbeck
,
J.
, and
Badler
,
N.
,
2002
, “
Toward Representing Agent Behaviors Modified by Personality and Emotion
,”
Embodied Conversational Agents at AAMAS
,
2
, pp.
15
19
.
16.
Salvit
,
J.
, and
Sklar
,
E. S.
,
2012
, “
Modulating Agent Behavior Using Human Personality Types
,”
Proceedings of the Workshop on Human-Agent Interaction Design and Models (HAIDM) at Autonomous Agents and Multi-agent Systems (AAMAS)
,
Valencia, Spain
,
June 4–8
, pp.
145
160
.
17.
Puentes
,
L.
,
Cagan
,
J.
, and
McComb
,
C.
,
2021
, “
Data-Driven Heuristic Induction for Human Design Behavior
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
2
), p.
024501
.
18.
Thaler
,
R.
, and
Sunstein
,
C.
,
2021
,
Nudge the Final Edition
,
Penguin Books
,
London, UK
.
19.
Katsikopoulos
,
K.
,
2011
, “
Psychological Heuristics for Making Inferences: Definiton, Performance, and the Emerging Theory and Practice
,”
Decis. Anal.
,
8
(
1
), pp.
10
29
.
20.
Leite
,
D.
,
Škrjanc
,
I.
, and
Gomide
,
F.
,
2020
, “
An Overview on Evolving Systems and Learning From Stream Data
,”
Evol. Syst.
,
11
(
2
), pp.
181
198
.
21.
Khani
,
N.
,
Humann
,
J.
, and
Jin
,
Y.
,
2016
, “
Effect of Social Structuring on Self-Organizing Systems
,”
ASME J. Mech. Des.
,
138
(
4
), p.
041101
.
22.
Barber
,
K.S.
,
Goel
,
A.
, and
Martin
,
C. E.
,
2000
, “
Dynamic Adaptive Autonomy in Multi-agent Systems
,”
J. Exp. Theor. Artif. Intell.
,
12
(
2
), pp.
129
147
.
23.
van der Vecht
,
B.
,
2009
, “
Adjustable Autonomy: Controlling Influences on Decision Making
,”
Ph.D. dissertation
,
Universiteit Utrecht
,
Utrecht, The Netherlands
.
24.
Huang
,
M.
,
Malhame
,
R.
, and
Caines
,
P.
,
2006
, “
Large Population Stochastic Dynamic Games: Closed-Loop McKean-Vlasov Systems and the Nash Certainty Equivalence Principle
,”
Commun. Inf.
,
6
(
3
), pp.
221
252
.
25.
Newton
,
J.
,
2018
, “
Evolutionary Game Theory: A Renaissance
,”
Games
,
9
(
2
), p.
31
.
26.
Ashley
,
D.
, and
Kleinberg
,
J.
,
2010
,
Networks, Crowds, and Markets: Reasoning About a Highly Connected World
,
Cambridge University Press
,
Cambridge, UK
.
27.
Xiao
,
A.
,
Zeng
,
S.
,
Allen
,
J. K.
,
Rosen
,
D. W.
, and
Mistree
,
F.
,
2005
, “
Collaborative Multidisciplinary Decision Making Using Game Theory and Design Capability Indices
,”
Res. Eng. Des.
,
16
(
1–2
), pp.
57
72
.
28.
Busoniu
,
L.
,
Babuska
,
R.
, and
De Schutter
,
B.
,
2008
, “
A Comprehensive Survey of Multiagent Reinforcement Learning
,”
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
,
38
(
2
), pp.
156
172
.
29.
Bras
,
B.
,
1992
, “
Foundations for Designing Decision-Based Design Processes
,”
Ph.D. dissertation
,
University of Houston
,
Houston, TX
.
30.
Bras
,
B.
, and
Mistree
,
F.
,
1991
, “
Designing Design Processes in Decision-Based Concurrent Engineering
,”
SAE Trans., Section 5
,
100
, pp.
1019
1040
.
31.
Schlenoff
,
C.
,
Knutilla
,
A.
, and
Ray
,
S.
,
1996
,
Unified Process Specification Language (PSL): Requirements for Modeling Process
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
32.
Schenoff
,
C.
,
Gruninger
,
M.
,
Tissot
,
F.
,
Valoios
,
J.
,
Lubell
,
J.
, and
Lee
,
J.
,
1966
, “
The Process Specification Language (PSL) Overview and Version 1.0 Specification
,” No. NISTR 6459,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
33.
Panchal
,
J.
,
Paredis
,
C.
,
Allen
,
J.
, and
Mistree
,
F.
,
2007
, “
Managing Design Process Complexity: A Value-of-Information Based Approach for Scale and Decision Decoupling
,”
ASME
, Paper No. DETC2007-35686.
34.
Panchal
,
J.
,
Paredis
,
J.
,
Allen
,
J.
, and
Mistree
,
F.
,
2008
, “
A Value of Information Based Approach to Simulation Model Refinement
,”
Eng. Optim.
,
40
(
3
), pp.
223
250
.
35.
Ming
,
Z.
,
Yan
,
Y.
,
Wang
,
G.
,
Panchal
,
J.
,
Goh
,
C.-H.
,
Allen
,
J.
, and
Mistree
,
F.
,
2016
, “
Ontology-Based Executable Design Decision Template Representation and Reuse
,”
AIEDAM
,
30
(
4
), pp.
309
405
.
36.
Ming
,
Z.
,
Wang
,
G.
,
Yan
,
Y.
,
Panchal
,
J.
,
Allen
,
J.
, and
Mistree
,
F.
,
2018
, “
An Ontology Based Representation of Design Decision Hierarchies
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
1
), p.
011001
.
37.
Ming
,
Z.
,
Sharma
,
G.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2019
, “
Template-Based Configuration and Execution of Decision Workflows in Design of Complex Engineered Systems
,”
Adv. Eng. Inform.
,
42
, p.
100985
.
38.
Ming
,
Z.
,
Sharma
,
G.
,
Allen
,
J.
, and
Mistree
,
F.
,
2020
, “
An Ontology for Representing Knowledge of Decision Interactions in Decision-Based Design
,”
Comput. Ind.
,
114
, p.
103145
.
39.
Wang
,
R.
,
Milisavljevic-Syed
,
J.
,
Guo
,
L.
,
Huang
,
Y.
, and
Wang
,
G.
,
2021
, “
Knowledge-Based Design Guidance System for Cloud-Based Decision Support in the Design of Complex Engineered Systems
,”
ASME J. Mech. Des.
,
143
(
7
), p.
072001
.
40.
Gilles
,
M.
, and
Bevacqua
,
E.
,
2022
, “
A Review of Virtual Assistants’ Characteristics: Recommendations for Designing an Optimal Human–Machine Cooperation
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
5
), p.
050904
.
41.
Qu
,
S.
,
Li
,
Y.
, and
Ji
,
Y.
,
2021
, “
The Mixed-Integer Robust Maximum Expert Consensus Models for Large-Scale GDM Under Uncertain Circumstance
,”
Appl. Soft Comput.
,
107
, p.
107369
.
42.
See
,
T.
, and
Lewis
,
K.
,
2006
, “
A Formal Approach to Handling Conflicts in Multiattribute Group Decision Making
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
678
688
.
43.
Yu
,
S.-M.
,
Du
,
Z.-J.
,
Zhang
,
X.-Y.
,
Luo
,
H.-Y.
, and
Lin
,
X.-D.
,
2021
, “
Punishment-Driven Consensus Reaching Model in Social Network Large-Scale Decision-Making With Application to Social Capital Selection
,”
Appl. Soft Comput., Part A
,
113
, p.
107912
.
44.
Panchal
,
J.
,
Fernandez
,
M.
,
Paredis
,
C.
,
Allen
,
J.
, and
Mistree
,
F.
,
2007
, “Leveraging Design Process-Related Intellectual Capitalâ A Key to Enhancing Enterprise Agility,”
Collaborative Product Design and Manufacturing Methodologies and Applications
,
W.
Li
,
S.
Ong
,
A.
Nee
, and
C.
McMahon
, eds.,
Springer
,
London, UK
, pp.
202
233
.
45.
Panchal
,
J.
,
Fernandez
,
M.
,
Paredis
,
C.
,
Allen
,
J.
, and
Mistree
,
F.
,
2004
, “
Designing Design Processes in Product Lifecycle Management: Research ISSUES and Strategies
,”
ASME Computers in Engineering Conference
,
ASME
,
Paper No. DETC2004/CIE-57742, pp.
901
913
.
46.
Nellippallil
,
A.
,
Allen
,
J.
,
Gautham
,
B.
,
Singh
,
A.
, and
Mistree
,
F.
,
2020
,
Architecting Robust Co-Design of Materials, Products, and Manufacturing Processes
,
Springer Nature
,
Switzerland
.
47.
Swaminathan
,
N.
,
Gautham
,
B.
,
Shkla
,
R.
,
Malhotra
,
C.
, and
Gaduparthi
,
T.
,
2022
, “
Digital Engineering Platform for Synergistic Decision-Making in Manufacturing Plan Operations: Research Questions
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Paper No. DETC2022-91277.
48.
IEEE Computer Society
,
2016
, “
IEEE Standard for System, Software, and Hardware Verification and Validation
,” No. IEEE Std 1012TM-2016, New York, NY.
49.
Simon
,
H.
,
1957
,
Administrative Behavior: A Study of Decision-Making Processes in Administrative Organizations
, 2nd ed.,
McMillen
,
New York
.
50.
Bar-Yam
,
Y.
,
2003
, “
When Systems Engineering Fails—Toward Complex Systems Engineering
,”
Systems, Man and Cybernetics, 2003
,
Washington, DC
,
Oct. 8
.
51.
Garza Morales
, G.
A.
,
Nizamis
,
K.
, and
Bonnema
,
G. M.
,
2023
, “
Engineering Complexity Beyond the Surface: Discerning the Viewpoints, the Drivers, and the Challenges
,”
Res. Eng. Des.
,
34
(
3
), pp.
367
400
.
52.
Taguchi
,
G.
,
1985
, “
Quality Engineering in Japan
,”
Commun. Stat.—Theory Methods
,
14
(
11
), pp.
2785
2801
.
53.
Allen
,
J.
,
Seepersad
,
C.
,
Choi
,
H.-J.
, and
Mistree
,
F.
,
2006
, “
Robust Design for Multiscale and Multidisciplinary Applications
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
832
843
.
54.
Choi
,
H
,
McDowell
,
D. L.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2008
, “
An Inductive Design Exploration Method for Hierarchical Systems Design Under Uncertainty
,”
ASME J. Mech. Des.
,
40
(
4
), pp.
287
307
.
55.
Zhang
,
J.
,
Yin
,
J.
, and
Wang
,
R.
,
2020
, “
Basic Framework and Main Methods on Uncertainty Quantification
,”
Math. Probl. Eng.
,
2020
, pp.
1
18
.
56.
Oberkampf
,
W.
, and
Roy
,
C.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
57.
Huang
,
X.
,
Wu
,
L.
, and
Ye
,
Y.
,
2019
, “
A Review on Dimensionality Reduction Techniques
,”
Int. J. Pattern Recognit. Artif. Intell.
,
33
(
10
), p.
1950017
.
58.
Kern
,
P. C.
,
Priddy
,
M. W.
,
Ellis
,
B. D.
, and
McDowell
,
D. L.
,
2017
, “
pyDEM: A Generalized Implementation of the Inductive Design Exploration Method
,”
Mater. Des.
,
134
, pp.
293
300
.
59.
Arróyave
,
R.
, and
McDowell
,
D. L.
,
2019
, “
Systems Approaches to Materials Design: Past, Present, and Future
,”
Annu. Rev. Mater. Res.
,
49
(
1
), pp.
103
126
.
60.
Flores Ituarte
,
I.
,
Panicker
,
S.
,
Nagarajan
,
H. P. N.
,
Coatanea
,
E.
, and
Rosen
,
D. W.
,
2023
, “
Optimisation-Driven Design to Explore and Exploit the Process–Structure–Property–Performance Linkages in Digital Manufacturing
,”
J. Intell. Manuf.
,
34
(
1
), pp.
219
241
.
61.
McDowell
,
D.
,
2021
, “
Gaps and Barriers to Successful Integration and Adoption of Practical Materials Informatics Tools and Workflows
,”
JOM
,
73
(
1
), pp.
138
148
.
62.
Xiong
,
W.
, and
Olson
,
G.
,
2016
, “
Cybermaterials: Materials by Design and Accelerated Insertion of Materials
,”
npj Comput. Mater.
,
2
(
1
), pp.
1
14
.
63.
Panchal
,
J.
,
Kalidindi
,
S.
, and
McDowell
,
D.
,
2013
, “
Key Computational Modeling Issues in Integrated Computational Materials Engineering
,”
Comput.-Aided Des.
,
45
(
1
), pp.
4
25
.
64.
McDowell
,
D.
, and
Olson
,
G.
,
2008
, “Concurrent Design of Hierarchical Materials and Structures,”
Scientific Modeling and Simulations
,
S.
Yip
and
T.
Diaz Rubia
, eds.,
Springer
,
Dordrecht, Netherlands
, pp.
207
240
.
65.
McDowell
,
D.
,
2018
, “Microstructure-Sensitive Computational Structure-Property Relations in Materials Design,”
Computational Materials System Design
,
D.
Shin
and
J.
Saal
, eds.,
Springer
,
Cham, Switzerland
, pp.
1
25
.
66.
Sobieszczanski-Sobieski
,
J.
, and
Kodiyalam
,
S.
,
2001
, “
BLISS/S: A New Method for Two-Level Structural Optimization
,”
Struct. Multidiscipl. Optim.
,
21
(
1
), pp.
1
13
.
67.
Kim
,
H.
,
Michelena
,
F.
,
Papalambros
,
P.
, and
Jiang
,
T.
,
2003
, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
474
480
.
68.
Du
,
X.
, and
Chen
,
W.
,
2002
, “
Efficient Uncertainty Analysis Methods for Multidisciplinary Robust Design
,”
AIAA J.
,
40
(
3
), pp.
545
552
.
69.
Shahan
,
D.
, and
Seepersad
,
C.
,
2012
, “
Bayesian Network Classifiers for Set-Based Collaborative Design
,”
ASME J. Mech. Des.
,
134
(
7
), p.
071001
.
70.
Gou
,
L.
,
2021
, “
Model Evolution for the Realization of Complex Systems
,”
Ph.D. dissertation
,
Industrial and Systems Engineering, University of Oklahoma
,
Norman, OK
.
71.
Murphy
,
T.
,
Tsui
,
K.-L.
, and
Allen
,
J.
,
2005
, “
A Review of Robust Design Methods for Multiple Responses
,”
Res. Eng. Des.
,
15
(
4
), pp.
201
215
.
72.
Baby
,
M.
,
Gupta
,
A.
,
Broussard
,
J.
,
Allen
,
J. K.
,
Mistree
,
F.
, and
Nellippallil
,
A. B.
,
2023
, “
A Framework to Support Multilevel Robust Co-Design of Manufacturing Supply Networks
,”
ASME Design Automation Conference
, Paper. No. DETC2023-117145.
73.
Sushil
,
R. R.
,
Baby
,
M.
,
Sharma
,
G.
,
Balu Nellippallil
,
A.
, and
Ramu
,
P.
,
2022
, “
Data Driven Integrated Design Space Exploration Using iSOM
,”
ASME Design Automation Conference
, Paper. No. DETC2022-89895.
74.
Riedmaier
,
S.
,
Ponn
,
T.
,
Ludwig
,
D.
,
Schick
,
B.
, and
Diermeyer
,
F.
,
2020
, “
Survey of Scenarios-Based Safety Assessment of Automated Vehicles
,”
IEEE Access
,
8
, pp.
87456
874777
.
You do not currently have access to this content.