Abstract

This paper focuses on the representation and synthesis of coupler curves of planar mechanisms using a deep neural network. While the path synthesis of planar mechanisms is not a new problem, the effective representation of coupler curves in the context of neural networks has not been fully explored. This study compares four commonly used features or representations of four-bar coupler curves: Fourier descriptors, wavelets, point coordinates, and images. The results demonstrate that these diverse representations can be unified using a generative AI framework called variational autoencoder (VAE). This study shows that a VAE can provide a standalone representation of a coupler curve, regardless of the input representation, and that the compact latent dimensions of the VAE can be used to describe coupler curves of four-bar linkages. Additionally, a new approach that utilizes a VAE in conjunction with a fully connected neural network to generate dimensional parameters of four-bar linkage mechanisms is proposed. This research presents a novel opportunity for the automated conceptual design of mechanisms for robots and machines.

References

1.
Vasiliu
,
A.
, and
Yannou
,
B.
,
2001
, “
Dimensional Synthesis of Planar Mechanisms Using Neural Networks: Application to Path Generator Linkages
,”
Mech. Mach. Theory
,
36
(
2
), pp.
299
310
.
2.
Bai
,
S.
, and
Angeles
,
J.
,
2015
, “
Coupler-Curve Synthesis of Four-Bar Linkages Via a Novel Formulation
,”
Mech. Mach. Theory
,
94
(
3–4
), pp.
177
187
.
3.
Plecnik
,
M. M.
,
2015
, “
The Kinematic Design of Six-Bar Linkages Using Polynomial Homotopy Continuation
,” Ph.D. thesis,
University of California
,
Irvine, CA
.
4.
Taunk
,
K.
,
De
,
S.
,
Verma
,
S.
, and
Swetapadma
,
A.
,
2019
, “
A Brief Review of Nearest Neighbor Algorithm for Learning and Classification
,”
2019 International Conference on Intelligent Computing and Control Systems (ICCS)
,
Madurai, India
,
May 15–17
, IEEE.
5.
Efrat
,
G.
,
Har-Peled
,
S.
, and
Mitchell
,
M.
,
2002
, “
New Similarity Measures Between Polylines With Applications to Morphing and Polygon Sweeping
,”
Discrete Comput. Geom.
,
28
(
4
), pp.
535
569
.
6.
Efrat
,
A.
,
Fan
,
Q. F.
, and
Venkatasubramanian
,
S.
,
2007
, “
Curve Matching, Time Warping, and Light Fields: New Algorithms for Computing Similarity Between Curves
,”
J. Math. Imag. Vis.
,
27
(
3
), pp.
203
216
.
7.
Oring
,
A.
,
Yakhini
,
Z.
, and
Hel-Or
,
Y.
,
2020
, “
Faithful Autoencoder Interpolation by Shaping the Latent Space
,” CoRR abs/2008.01487.
8.
Vermeer
,
K.
,
Kuppens
,
R.
, and
Herder
,
J.
,
2018
, “
Kinematic Synthesis Using Reinforcement Learning
,”
Volume 2A: 44th Design Automation Conference
,
Quebec City, Canada
,
Aug. 26–29
.
9.
Fogelson
,
M. B.
,
Tucker
,
C.
, and
Cagan
,
J.
,
2023
, “
GCP-HOLO: Generating High-Order Linkage Graphs for Path Synthesis
,”
ASME J. Mech. Des.
,
145
(
7
), p.
073303
.
10.
Unruh
,
V.
, and
Krishnaswami
,
P.
,
1995
, “
A Computer-Aided Design Technique for Semi-Automated Infinite Point Coupler Curve Synthesis of Four-Bar Linkages
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
143
149
.
11.
Mcgarva
,
J.
, and
Mullineux
,
G.
,
1993
, “
Harmonic Representation of Closed Curves
,”
Appl. Math. Model.
,
17
(
4
), pp.
213
218
.
12.
Mcgarva
,
J. R.
,
1994
, “
Rapid Search and Selection of Path Generating Mechanisms From a Library
,”
Mech. Mach. Theory
,
29
(
2
), pp.
223
235
.
13.
Ullah
,
I.
, and
Kota
,
S.
,
1997
, “
Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods
,”
ASME J. Mech. Des.
,
119
(
4
), pp.
504
510
.
14.
Wu
,
J.
,
Ge
,
Q. J.
,
Gao
,
F.
, and
Guo
,
W. Z.
,
2011
, “
On the Extension of a Fourier Descriptor Based Method for Planar Four-Bar Linkage Synthesis for Generation of Open and Closed Paths
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031002
.
15.
Li
,
X.
,
Wu
,
J.
, and
Ge
,
Q. J.
,
2016
, “
A Fourier Descriptor-Based Approach to Design Space Decomposition for Planar Motion Approximation
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064501
.
16.
Sharma
,
S.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2019
, “
A Motion Synthesis Approach to Solving Alt-Burmester Problem by Exploiting Fourier Descriptor Relationship Between Path and Orientation Data
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011016
.
17.
Sharma
,
S.
, and
Purwar
,
A.
,
2018
, “
Optimal Non-uniform Parameterization Scheme for Fourier Descriptor Based Path Synthesis of Four Bar Mechanisms
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 2018
,
Quebec City, Canada
,
Aug. 26–29
.
18.
Khan
,
N.
,
Ullah
,
I.
, and
Al-Grafi
,
M.
,
2015
, “
Dimensional Synthesis of Mechanical Linkages Using Artificial Neural Networks and Fourier Descriptors
,”
Mech. Sci.
,
6
(
1
), pp.
29
34
.
19.
Chuang
,
G. C.-H.
, and
Kuo
,
C.-C. J.
,
1996
, “
Wavelet Descriptor of Planar Curves: Theory and Applications
,”
IEEE Trans. Image Process.
,
5
(
1
), pp.
56
70
.
20.
Osowski
,
S.
, and
Nghia
,
D. D.
,
2002
, “
Fourier and Wavelet Descriptors for Shape Recognition Using Neural Networks—A Comparative Study
,”
Pattern Recognit.
,
35
(
9
), pp.
1949
1957
.
21.
Nabout
,
A. A.
, and
Tibken
,
B.
,
2005
, “
Wavelet Descriptors for Object Recognition Using Mexican Hat Function
,”
IFAC Proc. Volumes
,
38
(
1
), pp.
1107
1112
.
22.
Nabout
,
A. A.
, and
Tibken
,
B.
,
2007
, “
Object Shape Recognition Using Mexican Hat Wavelet Descriptors
,”
2007 IEEE International Conference on Control and Automation
,
Hong Kong, China
,
Mar. 21–23
.
23.
Nabout
,
A. A.
,
2013
, “
Object Shape Recognition Using Wavelet Descriptors
,”
J. Eng.
,
2013
(
3
), pp.
1
15
.
24.
Sun
,
J.
,
Liu
,
W.
, and
Chu
,
J.
,
2015
, “
Dimensional Synthesis of Open Path Generator of Four-Bar Mechanisms Using the Haar Wavelet
,”
ASME J. Mech. Des.
,
137
(
8
), p.
082303
.
25.
Liu
,
W.
,
Sun
,
J.
,
Zhang
,
B.
, and
Chu
,
J.
,
2018
, “
Wavelet Feature Parameters Representations of Open Planar Curves
,”
Appl. Math. Model.
,
57
(
1
), pp.
614
624
.
26.
Li
,
L.
,
Cheng
,
W.
,
Tsukada
,
K.
, and
Hanasaki
,
K.
,
2004
, “
Flaw Classification by Using Artificial Neural Network and Wavelet
,”
ASME Pressure Vessels and Piping Conference
,
San Diego, CA
,
July 25–29
, pp.
59
65
.
27.
Maćkiewicz
,
A.
, and
Ratajczak
,
W.
,
1993
, “
Principal Components Analysis (PCA)
,”
Comput. Geosci.
,
19
(
3
), pp.
303
342
.
28.
Galan-Marin
,
G.
,
Alonso
,
F. J.
, and
Del Castillo
,
J. M.
,
2009
, “
Shape Optimization for Path Synthesis of Crank-Rocker Mechanisms Using a Wavelet-Based Neural Network
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1132
1143
.
29.
Deshpande
,
S.
, and
Purwar
,
A.
,
2020
, “
An Image-Based Approach to Variational Path Synthesis of Linkages
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
2
), p.
021005
.
30.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
A Machine Learning Approach to Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021004
.
31.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
Computational Creativity Via Assisted Variational Synthesis of Mechanisms Using Deep Generative Models
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121402
.
32.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2022
, “
Deep Generative Models in Engineering Design: A Review
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071704
.
33.
Purwar
,
A.
, and
Chakraborty
,
N.
,
2023
, “
Deep Learning-Driven Design of Robot Mechanisms
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
6
), p.
060811
.
34.
Nobari
,
A. H.
,
Srivastava
,
A.
,
Gutfreund
,
D.
, and
Ahmed
,
F.
,
2022
, “
LINKS: A Dataset of a Hundred Million Planar Linkage Mechanisms for Data-Driven Kinematic Design
,”
Volume 3A: 48th Design Automation Conference (DAC)
,
St. Louis, MO
,
Aug. 14–17
.
35.
Chang
,
W.-T.
,
Lin
,
C.-C.
, and
Wu
,
L.-I.
,
2005
, “
A Note on Grashof Theorem
,”
J. Marine Sci. Technol.
,
13
(
4
), pp.
239
248
.
36.
Kota
,
S.
,
1992
, “
Automatic Selection of Mechanism Designs From a Three-Dimensional Design Map
,”
J. Mech. Des.
,
114
(
3
), pp.
359
367
.
37.
Daubechies
,
I.
,
1988
, “
Orthonormal Bases of Compactly Supported Wavelets
,”
Commun. Pure Appl. Math.
,
41
(
7
), pp.
909
996
.
38.
Singh
,
P.
,
Singh
,
P.
, and
Sharma
,
R. K.
,
2011
, “
JPEG Image Compression Based on Biorthogonal, Coiflets and Daubechies Wavelet Families
,”
Int. J. Comput. Appl.
,
13
(
1
), pp.
1
7
.
39.
Popov
,
D.
,
Gapochkin
,
A.
, and
Nekrasov
,
A.
,
2018
, “
An Algorithm of Daubechies Wavelet Transform in the Final Field When Processing Speech Signals
,”
Electronics
,
7
(
7
), pp.
120
120
.
40.
Wahid
,
K.
,
2011
, “Low Complexity Implementation of Daubechies Wavelets for Medical Imaging Applications,”
Discrete Wavelet Transforms - Algorithms and Applications
,
IntechOpen
,
London, UK
.
41.
Bank
,
D.
,
Koenigstein
,
N.
, and
Giryes
,
R.
,
2020
, “
Autoencoders
,”
CoRR
,
abs/2003.05991
. https://arxiv.org/abs/2003.05991
42.
Satapathy
,
S. C.
,
Bhateja
,
V.
,
Mohanty
,
J. R.
, and
Udgata
,
S. K.
,
2020
, “
Smart Intelligent Computing and Applications
,”
Proceedings of the Second International Conference on SCI 2018, Vol. 1
,
Bhubaneshwar, Odisha, India
,
Dec. 21–22
, Springer Singapore.
43.
Kullback
,
S.
, and
Leibler
,
R. A.
,
1951
, “
On Information and Sufficiency
,”
Ann. Math. Stat.
,
22
(
1
), pp.
79
86
.
44.
van der Maaten
,
L.
, and
Hinton
,
G.
,
2008
, “
Visualizing Data Using t-SNE
,”
J. Mach. Learn. Res.
,
9
(
86
), pp.
2579
2605
.
You do not currently have access to this content.