Abstract

As supply chain complexity and dynamism challenge traditional management approaches, integrating large language models (LLMs) and knowledge graphs (KGs) emerges as a promising method for advancing supply chain analytics. This article presents a methodology crafted to harness the synergies between LLMs and KGs, with a particular focus on enhancing supplier discovery practices. The primary goal is to transform and integrate a vast body of unstructured supplier capability data into a harmonized KG, thus improving the supplier discovery process and enhancing the accessibility and findability of manufacturing suppliers. Through an ontology-driven graph construction process, the presented methodology integrates KGs and retrieval-augmented generation with advanced LLM-based natural language processing techniques. With the aid of a detailed case study, we showcase how this integrated approach not only enhances the quality of answers and increases visibility for small- and medium-sized manufacturers but also amplifies agility and provides strategic insights into supply chain management.

References

1.
Manufactured in North Carolina
,
2024
. “Manufactured in North Carolina.” https://www.manufacturednc.com/, Accessed March 22, 2024.
2.
Mfg.com. https://www.mfg.com/, Accessed April 3, 2024.
3.
Thomas Publishing Company
,
2024
. “Thomasnet.” https://www.thomasnet.com. Accessed April 3, 2024.
4.
“Openai chat.” https://chat.openai.com/, Accessed April 3, 2024.
5.
Carta
,
S.
,
Giuliani
,
A.
,
Piano
,
L.
,
Podda
,
A. S.
,
Pompianu
,
L.
, and
Tiddia
,
S. G.
,
2023
, “
Iterative Zero-Shot LLM Prompting for Knowledge Graph Construction
,”
arXiv
. https://arxiv.org/abs/2307.01128
6.
Ko
,
H.
,
Witherell
,
P.
,
Lu
,
Y.
,
Kim
,
S.
, and
Rosen
,
D. W.
,
2021
, “
Machine Learning and Knowledge Graph Based Design Rule Construction for Additive Manufacturing
,”
Addit. Manuf.
,
37
, p.
101620
.
7.
Sabbagh
,
R.
,
Ameri
,
F.
, and
Yoder
,
R.
,
2018
, “
Thesaurus-Guided Text Analytics Technique for Capability-Based Classification of Manufacturing Suppliers
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
3
), p.
031009
.
8.
Ameri
,
F.
, and
McArthur
,
C.
,
2014
, “
Semantic Rule Modelling for Intelligent Supplier Discovery
,”
Int. J. Comput. Integr. Manuf.
,
27
(
6
), pp.
570
590
.
9.
Lee
,
J.
,
Jung
,
K.
,
Kim
,
B. H.
,
Peng
,
Y.
, and
Cho
,
H.
,
2015
, “
Semantic Web-Based Supplier Discovery System for Building a Long-Term Supply Chain
,”
Int. J. Comput. Integr. Manuf.
,
28
(
2
), pp.
155
169
.
10.
Mesmer
,
L.
, and
Olewnik
,
A.
,
2018
, “
Enabling Supplier Discovery Through a Part-Focused Manufacturing Process Ontology
,”
Int. J. Comput. Integr. Manuf.
,
31
(
1
), pp.
87
100
.
11.
Papa
,
M.
,
Ioannis
,
C.
, and
Aris
,
A.
,
2024
, “
Automated Natural Language Processing-Based Supplier Discovery for Financial Services
,”
Big Data
,
12
, pp.
30
48
.
12.
Sun
,
Q.
,
Huang
,
K.
,
Yang
,
X.
,
Tong
,
R.
,
Zhang
,
K.
, and
Poria
,
S.
,
2024
, “Consistency Guided Knowledge Retrieval and Denoising in LLMS For Zero-Shot Document-Level Relation Triplet Extraction,” preprint arXiv:2401.13598.
13.
Rusu
,
D.
,
Dali
,
L.
,
Fortuna
,
B.
,
Grobelnik
,
M.
, and
Mladenic
,
D.
,
2007
, “
Triplet Extraction From Sentences
,”
Proceedings of the 10th International Multiconference, Information Society-IS
,
Ljubljana, Slovenia
,
Oct. 8–12
, pp.
8
12
.
14.
Nayak
,
T.
,
Majumder
,
N.
,
Goyal
,
P.
, and
Poria
,
S.
,
2021
, “
Deep Neural Approaches to Relation Triplets Extraction: A Comprehensive Survey
,”
Cogn. Comput.
,
13
(
5
), pp.
1215
1232
.
15.
Modarressi
,
A.
,
Imani
,
A.
,
Fayyaz
,
M.
, and
Schütze
,
H.
,
2023
, “Ret-LLM: Towards a General Read-Write Memory for Large Language Models,” preprint arXiv:2305.14322.
16.
Yang
,
L.
,
Chen
,
H.
,
Li
,
Z.
,
Ding
,
X.
, and
Wu
,
X.
,
2023
, “ChatGPT Is Not Enough: Enhancing Large Language Models With Knowledge Graphs for Fact-Aware Language Modeling,” preprint arXiv:2306.11489.
17.
Soman
,
K.
,
Rose
,
P. W.
,
Morris
,
J. H.
,
Akbas
,
R. E.
,
Smith
,
B.
,
Peetoom
,
B.
, and
Villouta-Reyes
,
C.
, et al.
2024
, “
Biomedical Knowledge Graph-Optimized Prompt Generation for Large Language Models
,”
Bioinformatics
,
40
(
9
), p.
btae560
.
18.
Jiang
,
X.
,
Zhang
,
R.
,
Xu
,
Y.
,
Qiu
,
R.
,
Fang
,
Y.
,
Wang
,
Z.
,
Tang
,
J.
, et al.,
2024
, “
Hykge: A Hypothesis Knowledge Graph Enhanced Framework for Accurate and Reliable Medical LLMS Responses
,”
arXiv
. https://arxiv.org/abs/2312.15883
19.
Li
,
Y.
, and
Starly
,
B.
,
2024
, “
Building a Knowledge Graph to Enrich ChatGPT Responses in Manufacturing Service Discovery
,”
J. Ind. Inf. Integr.
,
40
, p.
100612
.
20.
Zhou
,
B.
,
Li
,
X.
,
Liu
,
T.
,
Xu
,
K.
,
Liu
,
W.
, and
Bao
,
J.
,
2024
, “
CausalKGPT: Industrial Structure Causal Knowledge-Enhanced Large Language Model for Cause Analysis of Quality Problems in Aerospace Product Manufacturing
,”
Adv. Eng. Inform.
,
59
, p.
102333
.
21.
Xiao
,
Y.
,
Zheng
,
S.
,
Shi
,
J.
,
Du
,
X.
, and
Hong
,
J.
,
2023
, “
Knowledge Graph-Based Manufacturing Process Planning: A State-of-the-Art Review
,”
J. Manuf. Syst.
,
70
, pp.
417
435
.
22.
Radford
,
A.
,
Narasimhan
,
K.
,
Salimans
,
T.
, and
Sutskever
,
I.
,
2018
, “Improving Language Understanding by Generative Pre-Training,” OpenAI Technical Report.
23.
Hao
,
X.
,
Ji
,
Z.
,
Li
,
X.
,
Yin
,
L.
,
Liu
,
L.
,
Sun
,
M.
,
Liu
,
Q.
, and
Yang
,
R.
,
2021
, “
Construction and Application of a Knowledge Graph
,”
Remote Sens.
,
13
(
13
), p.
2511
.
24.
Ameri
,
F.
, and
Bernstein
,
W.
,
2017
, “
A Thesaurus-Guided Framework for Visualization of Unstructured Manufacturing Capability Data
,” Advances in Production Management Systems. The Path to Intelligent, Collaborative and Sustainable Manufacturing: IFIP WG 5.7 International Conference, APMS 2017, Proceedings, Part I, Hamburg, Germany, September 3–7, 2017,
Springer
, pp.
202
212
.
25.
Drobnjakovic
,
M.
,
Kulvatunyou
,
B.
,
Ameri
,
F.
,
Will
,
C.
,
Smith
,
B.
, and
Jones
,
A.
,
2022
, “The Industrial Ontologies foundry (IOF) Core Ontology.”
26.
“Manufactured in North Carolina.” https://www.manufacturednc.com/. Accessed April 3, 2024.
27.
Li
,
Y.
,
Ko
,
H.
, and
Ameri
,
F.
,
2024
, “Supplier Triplet Dataset.” https://figshare.com/articles/journal_contribution/Supplier_Triplet_Dataset/26090326, 6. doi:10.6084/m9.figshare.26090326.v1.
28.
OpenAI
,
2024
, “Fine-Tuning Guide.” https://platform.openai.com/docs/guides/fine-tuning. Accessed June 20, 2024.
29.
LangChain
,
2023
, “Neo4j Cypher Integration - Langchain Documentation.” Accessed April 15, 2024.
30.
LlamaIndex
,
2023
, “Knowledge Graph - Llamaindex Api Reference.” Accessed April 15, 2024.
31.
LlamaIndex
,
2023
, “Summaryindexretriever - Llamaindex Api Reference.” Accessed April 15, 2024.
32.
Kong
,
J.
,
Wang
,
J.
, and
Zhang
,
X.
,
2022
, “
Hierarchical BERT With an Adaptive Fine-Tuning Strategy for Document Classification
,”
Knowl. Based Syst.
,
238
, p.
107872
.
33.
Carlson
,
A.
,
Betteridge
,
J.
,
Wang
,
R. C.
,
Hruschka Jr
,
E. R.
, and
Mitchell
,
T. M.
,
2010
, “
Coupled Semi-Supervised Learning for Information Extraction
,”
Proceedings of the Third ACM International Conference on Web Search and Data Mining
,
New York City
,
Feb. 3–6
, pp.
101
110
.
34.
Dalvi
,
B. B.
,
Cohen
,
W. W.
, and
Callan
,
J.
,
2012
, “
Websets: Extracting Sets of Entities From the Web Using Unsupervised Information Extraction
,”
Proceedings of the Fifth ACM International Conference on Web Search and Data Mining
,
Seattle, WA
,
Feb. 8–12
, pp.
243
252
.
35.
Zhu
,
X.
,
Li
,
Z.
,
Wang
,
X.
,
Jiang
,
X.
,
Sun
,
P.
,
Wang
,
X.
,
Xiao
,
Y.
, and
Yuan
,
N. J.
,
2024
, “
Multi-Modal Knowledge Graph Construction and Application: A Survey
,”
IEEE. Trans. Knowl. Data. Eng.
,
36
(
2
), pp.
715
735
.
36.
Sulaeman
,
M. M.
, and
Harsono
,
M.
,
2021
, “
Supply Chain Ontology: Model Overview and Synthesis
,”
J. Mantik
,
5
(
2
), pp.
790
799
.
37.
A&G Machining LLC. https://www.manufacturednc.com/A-and-G-Machining-LLC, Accessed April 2024.
You do not currently have access to this content.