Graphical Abstract Figure

Heat map of the found optimal reference points

Graphical Abstract Figure

Heat map of the found optimal reference points

Close modal

Abstract

In the machining industry, fixturing of indexable inserts in the tool holders plays a critical role in ensuring high-quality outcomes by minimizing insert movement during operations. Ensuring consistent pressure distribution in an indexable cutting tool interface is essential for extending the lifespan of a carbide insert. However, existing methods either lack the necessary complexity to accommodate varying loads or are overly intricate for implementation in the early stages of product development. To address this gap, a novel approach was developed that integrates the contact index algorithm into a robust locating scheme optimization. The results show that it is possible to design an indexable cutting tool where clearly defined contacting points (half-spheres) can support and maintain minimal movement in an indexable insert during its expected lifetime.

References

1.
Lopatukhin
,
I.
,
Ber
,
A.
, and
Rotberg
,
J.
,
2011
, “
Analysis and Optimization of the Contact Pressure Distribution Between an Insert and Its Pocket Due to the Clamping and the Cutting Action
,”
J. Manuf. Sci. Prod.
,
2
(
1
), pp.
17
26
.
2.
Melkote
,
S.
,
Liang
,
S.
,
Özel
,
T.
,
Jawahir
,
I. S.
,
Stephenson
,
D. A.
, and
Wang
,
B.
,
2022
, “
100th Anniversary Issue of the Manufacturing Engineering Division Paper: A Review of Advances in Modeling of Conventional Machining Processes: From Merchant to the Present
,”
ASME J. Manuf. Sci. Eng.
,
144
(
11
), p.
110801
.
3.
Altintas
,
Y.
,
Tuysuz
,
O.
,
Habibi
,
M.
, and
Li
,
Z. L.
,
2018
, “
Virtual Compensation of Deflection Errors in Ball End Milling of Flexible Blades
,”
CIRP Ann.
,
67
(
1
), pp.
365
368
.
4.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2018
, “
Time-Domain Modeling of Varying Dynamic Characteristics in Thin-Wall Machining Using Perturbation and Reduced-Order Substructuring Methods
,”
ASME J. Manuf. Sci. Eng., Trans.
,
140
(
1
), p.
011015
.
5.
Schleich
,
B.
, and
Wartzack
,
S.
,
2016
, “
A Quantitative Comparison of Tolerance Analysis Approaches for Rigid Mechanical Assemblies
,”
14th CIRP CAT 2016 – CIRP Conference on Computer Aided Tolerancing
,
Göteborg. Sweden
.
6.
Shen
,
Z.
,
Ameta
,
G.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2005
, “
A Comparative Study of Tolerance Analysis Methods
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
247
256
.
7.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
,
1996
, “
Deformable Sheet Metal Fixturing: Principles, Algorithms, and Simulations
,”
ASME J. Manuf. Sci. Eng., Trans.
,
118
(
3
), pp.
318
324
.
8.
Söderberg
,
R.
, and
Lindkvist
,
L.
,
1999
, “
Computer Aided Assembly Robustness Evaluation
,”
J. Eng. Des.
,
10
(
2
), pp.
165
181
.
9.
Söderberg
,
R.
,
Lindkvist
,
L.
, and
Dahlström
,
S.
,
2006
, “
Computer-Aided Robustness Analysis for Compliant Assemblies
,”
J. Eng. Des.
,
17
(
5
), pp.
411
428
.
10.
Shawki
,
G. S.
, and
Abdel-Aal
,
M. M.
,
1965
, “
Effect of Fixture Rigidity and Wear on Dimensional Accuracy
,”
Int. J. Mach. Tool Des. Res.
,
5
(
3
), pp.
183
202
.
11.
Shawki
,
G. S.
, and
Abdel-Aal
,
M. M.
,
1966
, “
Rigidity Considerations in Fixture Design-Contact Rigidity at Locating Elements
,”
Int. J. Mach. Tool Des. Res.
,
6
(
1
), pp.
31
43
.
12.
Shawki
,
G. S.
, and
Abdel-Aal
,
M. M.
,
1966
, “
Rigidity Considerations in Fixture Design-Rigidity of Clamping Elements
,”
Int. J. Mach. Tool Des. Res.
,
6
(
4
), pp.
207
220
.
13.
Hurtado
,
J. F.
, and
Melkote
,
S. N.
,
2001
, “
Improved Algorithm for Tolerance-Based Stiffness Optimization of Machining Fixtures
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
720
730
.
14.
Prabhaharan
,
G.
,
Asokan
,
P.
,
Ramesh
,
P.
, and
Rajendran
,
S.
,
2004
, “
Genetic-Algorithm-Based Optimal Tolerance Allocation Using a Least-Cost Model
,”
Int. J. Adv. Manuf. Technol.
,
24
, pp.
647
660
.
15.
Prabhaharan
,
G.
,
Padmanaban
,
K. P.
, and
Krishnakumar
,
R.
,
2007
, “
Machining Fixture Layout Optimization Using FEM and Evolutionary Techniques
,”
Int. J. Adv. Manuf. Technol.
,
32
(
11–12
), pp.
1090
1103
.
16.
Sundararaman
,
K. A.
,
Guharaja
,
S.
,
Padmanaban
,
K. P.
, and
Sabareeswaran
,
M.
,
2014
, “
Design and Optimization of Machining Fixture Layout for End-Milling Operation
,”
Int. J. Adv. Manuf. Technol.
,
73
(
5–8
), pp.
669
679
.
17.
Wu
,
D.
,
Zhao
,
B.
,
Wang
,
H.
,
Zhang
,
K.
, and
Yu
,
J.
,
2020
, “
Investigate on Computer-Aided Fixture Design and Evaluation Algorithm for Near-Net-Shaped Jet Engine Blade
,”
J. Manuf. Processes
,
54
, pp.
393
412
.
18.
Charles Liu
,
S.
, and
Jack Hu
,
S.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.
19.
Camuz
,
S.
,
Lorin
,
S.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2019
, “
Nonlinear Material Model in Part Variation Simulations of Sheet Metals
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021012
.
20.
Dahlstrom
,
S.
, and
Lindkvist
,
L.
,
2007
, “
Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
615
622
.
21.
Lööf
,
J.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2010
, “
Optimizing Locator Position to Maximize Robustness in Critical Product Dimensions
,”
Proc. ASME Des. Eng. Tech. Conf.
,
2
(
Parts A and B
), pp.
515
522
.
22.
Tabar
,
R. S.
,
Lorin
,
S.
,
Cromvik
,
C.
,
Lindkvist
,
L.
,
Warmefjord
,
K.
, and
Soderberg
,
R.
,
2021
, “
Efficient Spot Welding Sequence Simulation in Compliant Variation Simulation
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
071009
.
23.
Rezaei Aderiani
,
A.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
,
Lindkvist
,
L.
, and
Lindau
,
B.
,
2020
, “
Optimal Design of Fixture Layouts for Compliant Sheet Metal Assemblies
,”
Int. J. Adv. Manuf. Technol.
,
110
(
7–8
), pp.
2181
2201
.
24.
Camuz
,
S.
,
Bengtsson
,
M.
,
Söderberg
,
R.
, and
Wärmefjord
,
K.
,
2019
, “
Reliability-Based Design Optimization of Surface-to-Surface Contact for Cutting Tool Interface Designs
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041006
.
25.
Camuz
,
S.
,
Liljerehn
,
A.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2024
, “
Algorithm for Detecting Load-Carrying Regions Within the Tip Seat of an Indexable Cutting Tool
,”
J. Comput. Inf. Sci. Eng.
,
24
(
4
), p.
041006 (8 pages)
.
26.
Chychko
,
A.
,
García
,
J.
,
Collado Ciprés
,
V.
,
Holmström
,
E.
, and
Blomqvist
,
A.
,
2022
, “
HV-K IC Property Charts of Cemented Carbides: A Comprehensive Data Collection
,”
Int. J. Refract. Met. Hard Mater
,
103
, p.
105763
.
27.
Wahde
,
M.
,
2008
,
Biologically Inspired Optimization Methods—An Introduction
,
WIT Press
,
Southampton
.
28.
Bjoorklund
,
S.
,
Gustafsson
,
G.
,
Hageryd
,
L.
, and
Rundqvist
,
B.
,
2015
,
Karlebo Handbok
, 16th ed.,
Liber
,
Lund, Sweden
.
29.
García
,
J.
,
Collado Ciprés
,
V.
,
Blomqvist
,
A.
, and
Kaplan
,
B.
,
2019
, “
Cemented Carbide Microstructures: A Review
,”
Int. J. Refract. Met. Hard Mater
,
80
, pp.
40
68
.
You do not currently have access to this content.