Triple-dexel modeling is a geometric representation method, which depicts the intersection of a solid with rays cast in three orthogonal directions. Due to its fast Boolean operations, simple data structure, and easy implementation, triple-dexel modeling is highly suitable for real-time graphics-based simulation applications such as numerical control (NC) machining verification and virtual sculpting. This paper presents a novel surface reconstruction method from triple-dexel data by first converting the triple-dexel data into contours on three sets of orthogonal slices and then generating the solid’s boundary surface in triangular facets from these contours. The developed method is faster than the voxel-based method, and the reconstructed surface model is more accurate than the surface reconstructed from voxel representation using the marching cube algorithm. Examples are given to demonstrate the ability of surface reconstruction from the triple-dexel model in virtual sculpting.

1.
Van Hook
,
T.
, 1986, “
Real-Time Shaded NC Milling Display
,”
SIGGRAPH Computer Graphics
,
20
(
4
), pp.
15
20
.
2.
Huang
,
Y.
, and
Oliver
,
J. H.
, 1995, “
Integrated Simulation, Error Assessment and Tool Path Correction for Five-Axis NC Milling
,”
J. Manuf. Syst.
0278-6125,
14
(
5
), pp.
331
344
.
3.
Konig
,
A. H.
, and
Groller
,
E.
, 1998, “
Real-Time Simulation and Visualization of NC Milling Processes for Inhomogeneous Materials on Low-End Graphics Hardware
,”
Proceedings of the Computer Graphics International
, IEEE Computer Society, Jun. 22–26, pp.
338
.
4.
Peng
,
X.
, and
Leu
,
M. C.
, 2003, “
Interactive Solid Modeling in a Virtual Environment With Haptic Interface
,”
Virtual and Augmented Reality Applications in Manufacturing
,
Springer-Verlag London Limited
,
London
, Pt. 1.
5.
Leu
,
M. C.
,
Peng
,
X.
, and
Zhang
,
W.
, 2005, “
Surface Reconstruction for Interactive Modeling of Freeform Solids by Virtual Sculpting
,”
CIRP Ann.
0007-8506,
54
(
1
), pp.
131
134
.
6.
Peng
,
X.
,
Zhang
,
W.
, and
Leu
,
M. C.
, 2006, “
Freeform Modeling Using Sweep Differential Equation With Haptic Interface
,”
Virtual and Physical Prototyping
,
1
(
3
), pp.
183
196
.
7.
Muller
,
H.
,
Surmann
,
T.
,
Stautner
,
M.
,
Albersmann
,
F.
, and
Weinert
,
K.
, 2003, “
Online Sculpting and Visualization of Multi-Dexel Volumes
,”
Proceedings of ACM Symposium on Solid and Physical Modeling
, Seattle, WA, Jun. 16–20, pp.
258
261
.
8.
Ren
,
Y.
,
Lai-Yuen
,
K. S.
, and
Lee
,
Y. S.
, 2006, “
Virtual Prototyping and Manufacturing Planning by Using Tri-Dexel Models and Haptic Force Feedback
,”
Virtual and Physical Prototyping
,
1
(
1
), pp.
3
18
.
9.
Benouamer
,
M. O.
, and
Michelucci
,
D.
, 1997, “
Bridging the Gap Between CSG and Brep via a Triple Ray Representation
,”
Proceedings of Solid Modeling’97
, Atlanta, GA, May 14–16, pp.
68
79
.
10.
Barequet
,
G.
, and
Vaxman
,
A.
, 2007. “
Nonlinear Interpolation Between Slices
,”
Proceedings of the ACM Symposium on Solid and Physical Modeling
, Beijing, China, Jun. 4–6, pp.
97
107
.
11.
Svitak
,
R.
, and
Skala
,
V.
, 2004, “
A Robust Technique for Surface Reconstruction From Orthogonal Slices
,”
Mach. Graphics Vision
1230-0535,
12
(
3
), pp.
221
233
.
12.
Zhang
,
W.
,
Peng
,
X.
,
Leu
,
M. C.
, and
Zhang
,
W.
, 2007, “
A Novel Contour Generation Algorithm for Surface Reconstruction From Dexel Data
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
7
(
3
), pp.
203
210
.
13.
Lorensen
,
W. E.
, and
Cline
,
H. E.
, 1987, “
Marching Cubes: A High Resolution 3D Surface Reconstruction Algorithm
,”
Comput. Graph.
0097-8930,
21
(
4
), pp.
163
169
.
14.
Pfister
,
H.
,
Zwicker
,
M.
,
Van Baar
,
J.
, and
Gross
,
M.
, 2000, “
Surfels: Surface Elements as Rendering Primitives
,”
Proceedings of SIGGRAPH 2000
, New Orleans, LA, Jul. 23–28, pp.
335
342
.
15.
Azernikov
,
S.
,
Miropolsky
,
A.
, and
Fischer
,
A.
, 2003, “
Surface Reconstruction of Freeform Objects Based on Multi-Resolution Volumetric Method
,”
Proceedings of ACM Symposium on Solid and Physical Modeling
, Seattle, WA, June 16–20 pp.
115
126
.
16.
Edelsbrunner
,
H.
, and
Mucke
,
E. P.
, 1994, “
Three-Dimensional Alpha Shapes
,”
ACM Trans. Graphics
0730-0301,
13
(
1
), pp.
43
72
.
17.
Bernardini
,
F.
,
Mittleman
,
J.
,
Rushmeier
,
H.
,
Silva
,
C.
, and
Taubin
,
G.
, 1999, “
The Ball-Pivoting Algorithm for Surface Reconstruction
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
5
(
4
), pp.
349
359
.
18.
Amenta
,
N.
,
Choi
,
S.
, and
Kolluri
,
R.
, 2001, “
The Power Crust
,”
Sixth ACM Symposium on Solid Modeling and Applications
, Ann Arbor, MI, Jun. 4–8, pp.
249
266
.
19.
Dey
,
T.
,
Giesen
,
J.
, and
Hudson
,
J.
, 2001, “
A Delaunay Based Shape Reconstruction From Large Data
,”
Proceedings of the IEEE 2001 Symposium on Parallel and Large-data Visualization and Graphics
, San Diego, CA, Oct 23–23, pp.
19
27
.
20.
Carr
,
J. C.
,
Beatson
,
R. K.
,
Cherrie
,
J. B.
,
Mitchell
,
T. J.
,
Fright
,
W. R.
,
McCallum
,
B. C.
, and
Evans
,
T. R.
, 2001, “
Reconstruction and Representation of 3D Objects With Radial Basis Functions
,”
Proceedings of the 28th Annual Conference on Computer Graphics and interactive Techniques SIGGRAPH
, Los Angeles, CA, Aug. 12–17, pp.
67
76
.
21.
Alexa
,
M.
,
Behr
,
J.
,
Cohen-Or
,
D.
,
Fleishman
,
S.
,
Levin
,
D.
, and
Silva
,
C. T.
, 2001, “
Point Set Surfaces
,”
IEEE Visualization 2001
, San Diego, CA, Oct. 21–26, pp.
21
28
.
22.
Ohtake
,
Y.
,
Belyaev
,
A.
,
Alexa
,
M.
,
Turk
,
G.
, and
Seidel
,
H.
, 2003, “
Multi-Level Partition of Unity Implicits
,”
ACM Trans. Graphics
0730-0301,
22
(
3
), pp.
463
470
.
23.
Ohtake
,
Y.
,
Belyaev
,
A.
, and
Seidel
,
H.
, 2006, “
Sparse Surface Reconstruction With Adaptive Partition of Unity and Radial Basis Functions
,”
Graphical Models
,
68
(
1
), pp.
15
24
. 1524-0703
24.
Wang
,
Y. F.
, and
Aggarwal
,
J. K.
, 1986, “
Surface Reconstruction and Representation of 3D Scenes
,”
Pattern Recogn.
0031-3203,
19
(
3
), pp.
197
207
.
25.
Cignoni
,
P.
,
Montani
,
C.
, and
Scopigno
,
R.
, 1998, “
A Comparison of Mesh Simplification Algorithms
,”
Comput. Graph.
0097-8930,
22
(
1
), pp.
37
54
.
26.
Blackmore
,
D.
, and
Leu
,
M. C.
, 1992, “
Analysis of Swept Volume via Lie Groups and Differential Equations
,”
Int. J. Robot. Res.
0278-3649,
11
(
6
), pp.
516
537
.
27.
Kaufman
,
A.
,
Cohen
,
D.
, and
Yagel
,
R.
, 1995, “
Volume Graphics
,”
Computer
0018-9162,
26
(
7
), pp.
51
64
.
28.
Hadwiger
,
M.
,
Kniss
,
J. M.
,
Rezk-salama
,
C.
, and
Weiskopf
,
D.
, 2006,
Real-Time Volume Graphics
,
A. K. Peters
,
Massachusetts
.
29.
Karabassi
,
E. A.
,
Papaioannou
,
G.
, and
Theoharis
,
T.
, 1999, “
A Fast Depth-Buffer-Based Voxelization Algorithm
,”
Journal of Graphics Tools
,
4
(
4
), pp.
5
10
.
30.
Kobbelt
,
L. P.
,
Botsch
,
M.
,
Schwanecke
,
U.
, and
Seidel
,
H.
, 2001, “
Feature Sensitive Surface Extraction From Volume Data
,”
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH
, Los Angeles, CA, Aug. 12–17, pp.
57
–66.
31.
Ju
,
T.
,
Losasso
,
F.
,
Schaefer
,
S.
, and
Warren
,
J.
, 2002, “
Dual Contouring of Hermite Data
,”
Proceedings of ACM SIGGRAPH
, San Antonio, TX, July 21–26, pp.
339
346
.
You do not currently have access to this content.