This paper describes a new approach to perform continuous collision and interference detection between a pair of arbitrarily complex objects moving according to general three-dimensional affine motions. Our approach, which does not require any envelope computations, recasts the problem of detecting collisions and computing the interfering subsets in terms of inherently parallel set membership classification tests of specific curves against the original (static) geometric representations. We show that our approach can compute the subsets of the moving objects that collide and interfere, as well as the times of collision, which has important applications in mechanical design and manufacturing. Our approach can be implemented for any geometric representation that supports curve-solid intersections, such as implicit and parametric representations. We describe an implementation of the proposed technique for solids given as a boundary representation (B-rep), and illustrate its effectiveness for several rigid and deformable moving objects bounded by tesselated and freeform surfaces of various complexities. Furthermore, we show that our approach can be extended to also identify the local and global self-intersections of the envelopes of the moving objects without requiring to compute these envelopes explicitly. The paper concludes by summarizing the proposed approach as well as reviewing relevant computational improvements that can decrease the computational cost of the prototype implementation by orders of magnitude.

1.
Snyder
,
J. M.
, 1992, “
Interval Analysis for Computer Graphics
,”
SIGGRAPH ’92: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques
,
ACM
,
New York
, pp.
121
130
.
2.
Hadap
,
S.
,
Eberle
,
D.
,
Volino
,
P.
,
Lin
,
M. C.
,
Redon
,
S.
, and
Ericson
,
C.
, 2004, “
Collision Detection and Proximity Queries
,”
SIGGRAPH ’04: ACM SIGGRAPH 2004 Course Notes
,
ACM
,
New York
, p.
15
.
3.
Canny
,
J.
, 1986, “
Collision Detection for Moving Polyhedra
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
PAMI-8
, pp.
200
209
.
4.
Ganter
,
M.
, and
Isarankura
,
B.
, 1993, “
Dynamic Collision Detection Using Space Partitioning
,”
ASME J. Mech. Des.
0161-8458,
115
(
1
), pp.
150
155
.
5.
Ganter
,
M. A.
, and
Uicker
,
J. J. J.
, 1986, “
Dynamic Collision Detection Using Swept Solids
,”
American Society of Mechanical Engineers Design Engineering Technical Conference
.
6.
Ponamgi
,
M. K.
,
Manocha
,
D.
, and
Lin
,
M. C.
, 1994, “
Incremental Algorithms for Collision Detection Between General Solid Models
,” Department of Computer Science, University of North Carolina-Chapel Hill, Technical Report No. TR94-061.
7.
Jiménez
,
P.
,
Thomas
,
F.
, and
Torras
,
C.
, 2001, “
3D Collision Detection: A Survey
,”
Comput. Graph.
0097-8930,
25
(
2
), pp.
269
285
.
8.
Ilushin
,
O.
,
Elber
,
G.
,
Halperin
,
D.
,
Wein
,
R.
, and
Kim
,
M. -S.
, 2005, “
Precise Global Collision Detection in Multi-Axis NC-Machining
,”
Comput.-Aided Des.
0010-4485,
37
(
9
), pp.
909
920
.
9.
James
,
D. L.
, and
Pai
,
D. K.
, 2004, “
Bd-Tree: Output-Sensitive Collision Detection for Reduced Deformable Models
,”
SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers
,
ACM
,
New York
, pp.
393
398
.
10.
Schömer
,
E.
,
Reichel
,
J.
, and
Warken
,
T.
, 2002, “
Efficient Collision Detection for Curved Solid Objects
,”
SMA ’02: Proceedings of the Seventh ACM Symposium on Solid Modeling and Applications
,
ACM
,
New York
, pp.
321
328
.
11.
Herzen
,
B. V.
,
Barr
,
A. H.
, and
Zatz
,
H. R.
, 1990, “
Geometric Collisions for Time-Dependent Parametric Surfaces
,”
SIGGRAPH ’90: Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques
,
ACM
,
New York
, pp.
39
48
.
12.
Hughes
,
M.
,
DiMattia
,
C.
,
Lin
,
M. C.
, and
Manocha
,
D.
, 1996, “
Efficient and Accurate Interference Detection for Polynomial Deformation
,”
CA ’96: Proceedings of the Computer Animation
,
IEEE Computer Society
,
Washington, DC
, p.
155
.
13.
Page
,
F.
, and
Guibault
,
F.
, 2003, “
Collision Detection Algorithm for NURBS Surfaces in Interactive Applications
,”
IEEE CCECE 2003, Canadian Conference on Electrical and Computer Engineering
, Vol.
2
, pp.
1417
1420
.
14.
Erdim
,
H.
, and
Ilieş
,
H.
, 2008, “
Classifying Points for Sweeping Solids
,”
Comput.-Aided Des.
0010-4485,
40
(
9
), pp.
987
998
.
15.
Abdel-Malek
,
K.
,
Yang
,
J.
,
Blackmore
,
D.
, and
Joy
,
K.
, 2006, “
Swept Volumes: Foundations, Perspectives, and Applications
,”
Int. J. Shape Model.
0218-6543,
12
(
1
), pp.
87
127
.
16.
Ilieş
,
H.
, and
Shapiro
,
V.
, 1999, “
The Dual of Sweep
,”
Comput.-Aided Des.
0010-4485,
31
(
3
), pp.
185
201
.
17.
Zefran
,
M.
, and
Kumar
,
V.
, 1998, “
Interpolation Schemes for Rigid Body Motion
,”
CAD
0010-4485,
30
(
3
), pp.
179
189
.
18.
Röschel
,
O.
, 1998, “
Rational Motion Design—A Survey
,”
Comput.-Aided Des.
0010-4485,
30
(
3
), pp.
169
178
.
19.
Tilove
,
R. B.
, 1977, “
A Study of Geometric Set Membership Classification
,” MS thesis, University of Rochester, Rochester, NY
20.
Requicha
,
A.
, 1980, “
Representations for Rigid Solids: Theory, Methods and Systems
,”
ACM Comput. Surv.
0360-0300,
12
(
4
), pp.
437
463
.
21.
Tilove
,
R. B.
, 1980, “
Set Membership Classification: A Unified Approach to Geometric Intersection Problems
,”
IEEE Trans. Comput.
0018-9340,
C-29
(
10
), pp.
874
883
.
22.
Requicha
,
A.
, 2006, “
Geometric Modeling: A First Course
,” available online, http://www-pal.usc.edu/~requicha/book.html
23.
TetGen, Weierstrass Institute for Applied Analysis and Stochastics, http://tetgen.berlios.de/http://tetgen.berlios.de/.
24.
Edelsbrunner
,
H.
, and
Mücke
,
E.
, 1994, “
Three-Dimensional Alpha Shapes
,”
ACM Trans. Graph.
,
13
(
1
), pp.
43
72
. 0730-0301
25.
Peternell
,
M.
, 2004, “
Developable Surface Fitting to Point Clouds
,”
Comput. Aided Geom. Des.
0167-8396,
21
(
8
), pp.
785
803
.
26.
Wang
,
J.
,
Oliveira
,
M. M.
, and
Kaufman
,
A. E.
, 2005,
Reconstructing Manifold and Non-Manifold Surfaces From Point Clouds
,
IEEE Visualization
, Minneapolis, MN.
27.
Bruce
,
J. W.
, and
Giblin
,
P. J.
, 1992,
Curves and Singularities
,
Cambridge University Press
,
Cambridge
.
28.
Erdim
,
H.
, and
Ilieş
,
H.
, 2007, “
Detecting and Quantifying Envelope Singularities in the Plane
,”
Comput.-Aided Des.
0010-4485,
39
(
10
), pp.
829
840
.
29.
Jüttler
,
B.
, and
Wagner
,
M.
, 1996, “
Computer-Aided Design With Spatial Rational B-Spline Motions
,”
ASME J. Mech. Des.
0161-8458,
118
, pp.
193
201
.
30.
Jüttler
,
B.
, 1995, “
Spatial Rational Motions and Their Applications in Computer Aided Geometric Design
,”
Mathematical Methods for Curves and Surfaces
,
M.
Dæhlen
,
T.
Lyche
, and
L.
Schumaker
, eds.,
Vanderbilt University Press
,
Nashville, TN
, pp.
271
280
.
31.
Wagner
,
M.
, 1995, “
Planar Rational B-Spline Motions
,”
Comput.-Aided Des.
0010-4485,
27
(
2
), pp.
129
137
.
32.
Wagner
,
M.
, and
Ravani
,
B.
, 1996, “
Computer Aided Design of Robot Trajectories Using Rational Motions
,”
Recent Advances in Robot Kinematics
,
L.
Lenarčič
and
V.
Parenti-Castelli
, eds.,
Kluwer
,
Dordrecht
, pp.
151
158
.
33.
Manocha
,
D.
, and
Krishnan
,
S.
, 1997, “
Algebraic Pruning: A Fast Technique for Curve and Surface Intersection
,”
Comput. Aided Geom. Des.
0167-8396,
14
(
9
), pp.
823
845
.
34.
Horsch
,
T.
, and
Jüttler
,
B.
, 1998, “
Cartesian Spline Interpolation for Industrial Robots
,”
Comput.-Aided Des.
0010-4485,
30
(
3
), pp.
217
224
.
35.
QHULL, The Geometry Center, http://www.qhull.orghttp://www.qhull.org.
You do not currently have access to this content.