Nonuniform rational B-splines (NURBs) have unique properties that make them attractive for engineering metamodeling applications. NURBs are known to accurately model many different continuous curve and surface topologies in one- and two-variate spaces. However, engineering metamodels of the design space often require hypervariate representations of multidimensional outputs. In essence, design space metamodels are hyperdimensional constructs with a dimensionality determined by their input and output variables. To use NURBs as the basis for a metamodel in a hyperdimensional space, traditional geometric fitting techniques must be adapted to hypervariate and hyperdimensional spaces composed of both continuous and discontinuous variable types. In this paper, we describe the necessary adaptations for the development of a NURBs-based metamodel called a hyperdimensional performance model or HyPerModel. HyPerModels are capable of accurately and reliably modeling nonlinear hyperdimensional objects defined by both continuous and discontinuous variables of a wide variety of topologies, such as those that define typical engineering design spaces. We demonstrate this ability by successfully generating accurate HyPerModels of ten trial functions laying the foundation for future work with N-dimensional NURBs in design space applications.

1.
Ullman
,
D.
, 1997,
The Mechanical Design Process
, 2nd ed.,
McGraw-Hill
,
New York, NY
.
2.
Otto
,
K.
, and
Wood
,
K.
, 2001,
Product Design: Techniques in Reverse Engineering
,
Systematic Design, and New Product Development, Prentice-Hall
,
Upper Saddle River, NJ
.
3.
Kanukolanu
,
D.
,
Lewis
,
K.
, and
Winer
,
E.
, 2006, “
A Multidimensional Visualization Interface to Aid in Trade-Off Decisions During the Solution of Coupled Subsystems Under Uncertainty
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
6
(
3
), pp.
288
299
.
4.
Turner
,
C.
, 2005, “
HyPerModels: Hyperdimensional Performance Models for Engineering Design
,” Ph.D. thesis, The University of Texas at Austin, Austin, TX.
5.
Cohen
,
E.
,
Riesenfeld
,
R.
, and
Elber
,
G.
, 2001,
Geometric Modeling With Splines: An Introduction
,
A. K. Peters
,
Natick, MA
.
6.
Gopi
,
M.
, and
Manohar
,
S.
, 1997, “
A Unified Architecture for the Computation of B-Spline Curves and Surfaces
,”
IEEE Trans. Parallel Distrib. Syst.
1045-9219,
8
(
12
), pp.
1275
1287
.
7.
Rogers
,
D.
, and
Adams
,
J.
, 1990,
Mathematical Elements of Computer Graphics
, 2nd ed.,
McGraw-Hill
,
New York, NY
.
8.
Piegl
,
L.
, and
Tiller
,
W.
, 1997,
The NURBS Book
, 2nd ed.,
Springer-Verlag
,
Berlin, Germany
.
9.
Ma
,
W.
, and
Kruth
,
J. P.
, 1998, “
NURBs Curve and Surface Fitting for Reverse Engineering
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
14
(
12
), pp.
918
927
.
10.
Blanc
,
C.
, and
Schlick
,
C.
, 1996, “
Accurate Parameterization of Conics by NURBs
,”
IEEE Comput. Graphics Appl.
0272-1716,
16
(
6
), pp.
64
71
.
11.
Eck
,
M.
, and
Hoppe
,
H.
, 1996, “
Automatic Reconstruction of B-Spline Surfaces of Arbitrary Topological Type
,”
Proceedings of the 1996 ACM SIGGRAPH Conference
, New Orleans, LA, Aug. 4–9, pp.
325
334
.
12.
Hoppe
,
H.
,
DeRose
,
T.
,
Duchamp
,
T.
,
McDonald
,
J.
, and
Stuetzle
,
W.
, 1992, “
Surface Reconstruction From Unorganized Points
,”
Proceedings of the 1992 ACM SIGGRAPH Conference
, Chicago, IL, Jul. 26–31, pp.
71
78
.
13.
Lancaster
,
P.
, and
Salkauskas
,
K.
, 1981, “
Surfaces Generated by Moving Least Squares Methods
,”
Math. Comput.
0025-5718,
37
(
155
), pp.
141
158
.
14.
Levin
,
D.
, 1998, “
The Approximation Power of Moving Least-Squares
,”
Math. Comput.
0025-5718,
67
(
224
), pp.
1517
1531
.
15.
Wendland
,
H.
, 2001, “
Local Polynomial Reproduction and Moving Least Squares Approximation
,”
IMA J. Numer. Anal.
0272-4979,
21
(
1
), pp.
285
300
.
16.
Shen
,
C.
,
O’Brien
,
J. F.
, and
Shewchuk
,
J. R.
, 2004, “
Interpolating and Approximating Implicit Surfaces From Polygon Soup
,”
ACM Trans. Graphics
0730-0301,
23
(
3
), pp.
896
904
.
17.
Kolluri
,
R.
, 2005, “
Provably Good Moving Least Squares
,”
ACM SIGGRAPH 2005 Courses
, Los Angeles, CA, Jul. 31–Aug. 4, pp.
213
222
.
18.
Breitkopf
,
P.
,
Naceur
,
H.
,
Rassineux
,
A.
, and
Villon
,
P.
, 2005, “
Moving Least Squares Response Surface Approximation: Formulation and Metal Forming Applications
,”
Compos. Struct.
0263-8223,
83
(
17–18
), pp.
1411
1428
.
19.
Laurent-Gengoux
,
P.
, and
Mekhlef
,
M.
, 1993, “
Optimization of a NURBS Representation
,”
CAD
0010-4485,
25
(
11
), pp.
699
710
.
20.
Speer
,
T.
,
Kuppe
,
M.
, and
Hoschek
,
J.
, 1998, “
Global Reparameterization for Curve Approximation
,”
Comput. Aided Geom. Des.
0167-8396,
15
(
9
), pp.
869
877
.
21.
Park
,
I.
,
Yun
,
D.
, and
Lee
,
S.
, 1999, “
Constructing NURBSS Surface Model From Scattered and Unorganized Range Data
,”
Proceedings of the 1999 International 3-D Digital Imaging and Modeling Conference
, Ottawa, Canada, Oct. 4–8, pp.
312
320
.
22.
Xie
,
H.
, and
Qin
,
H.
, 2001, “
A Novel Optimization Approach to the Effective Computation of NURBs Knots
,”
Int. J. Shape Model.
0218-6543,
7
(
2
), pp.
199
227
.
23.
Sarfraz
,
M.
, and
Riyazuddin
,
M.
, 2006, “
Curve Fitting With NURBs Using Simulated Annealing
,”
Applied Soft Computing Technologies: The Challenge of Complexity
,
Springer
,
Berlin, Germany
.
24.
Ge
,
P.
,
Wang
,
N.
, and
Lu
,
S.
, 2002, “
An Evolutionary Modeling Approach for Automotive Bumper System Design and Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
2
(
3
), pp.
141
149
.
25.
Ligetti
,
C.
, and
Simpson
,
T.
, 2005, “
Metamodel-Driven Design Optimization Using Integrative Graphical Design Interfaces: Results From a Job-Shop Manufacturing Simulation Experiment
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
5
(
1
), pp.
8
17
.
26.
Hua
,
J.
,
He
,
Y.
, and
Qin
,
H.
, 2005, “
Trivariate Simplex Splines for Inhomogeneous Solid Modeling in Engineering Design
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
5
(
2
), pp.
149
157
.
27.
Turner
,
C.
, and
Crawford
,
R.
, 2006, “
Modeling Design Spaces With Discontinuous Variables Using NURBs HyPerModels
,”
Proceedings of the 2006 ASME IDETC/CIE Conferences
, Philadelphia, PA, Sept. 10–13, Paper No. CIE-99643.
28.
Turner
,
C.
,
Campbell
,
M.
, and
Crawford
,
R.
, 2004, “
Metamodel Defined Embedded Multidimensional Sequential Sampling Criteria
,”
Proceedings of the 2004 ASME IDETC/CIE Conferences
, Salt Lake City, UT, Sept. 28–Oct. 2, Paper No. CIE-57722.
29.
Turner
,
C.
,
Crawford
,
R.
, and
Campbell
,
M.
, 2007, “
Multidimensional Sequential Sampling for NURBs-Based Metamodel Development
,”
Eng. Comput.
0177-0667,
23
(
3
), pp.
155
174
.
30.
Legault
,
J.
, 2000, “
A Complexity Management Framework for Open Architecture Agile Manufacturing Systems
,” MS thesis, The University of Texas at Austin, Austin, TX.
31.
Turner
,
C.
, 2000,
“Developing Criteria for Actuator Resource Management
,” MS thesis, The University of Texas at Austin, Austin, TX.
32.
Sasena
,
M.
, 2002, “
Flexibility and Efficiency Enhancements for Constrained Global Design Optimization With Kriging Approximations
,” Ph.D. dissertation, The University of Michigan, Ann Arbor, MI.
33.
Griffiths
,
D.
, and
Smith
,
I.
, 1991,
Numerical Methods for Engineers
,
CRC
,
Boca Raton, FL
.
34.
Crow
,
E.
,
Davis
,
F.
, and
Maxfield
,
M.
, 1960,
Statistics Manual
,
Dover
,
New York, NY
.
35.
Turner
,
C.
, and
Crawford
,
R.
, 2005, “
Selecting an Appropriate Metamodel: The Case for NURBs Metamodels
,”
Proceedings of the 2005 ASME IDETC/CIE Conferences
, Long Beach, CA, Sept. 24–8, Paper No. DAC-85043.
36.
Turner
,
C.
,
Crawford
,
R.
, and
Campbell
,
M.
, 2007, “
Global Optimization With NURBs-Based Metamodels
,”
Eng. Optimiz.
0305-215X,
39
(
3
), pp.
245
269
.
37.
Murphy
,
T.
,
Lin
,
Y.
,
Tsui
,
K.
,
Allen
,
J.
,
Chen
,
V.
, and
Mistree
,
F.
, 2004, “
Robust Engineering Design
,”
Proceedings of the 2004 NSF DSM Grantees and Research Conference
, Dallas, TX, Jan. 5–8.
38.
Adorio
,
E.
, 2005, “
MVF-Multivariate Test Functions in C for Unconstrained Global Optimization
,” last accessed Feb. 6, http://geocities.com/eadorio/mvf.pdfhttp://geocities.com/eadorio/mvf.pdf.
39.
Turner
,
C.
, and
Crawford
,
R.
, 2005, “
Adapting Non-Uniform Rational B-Spline Fitting Techniques to Metamodeling
,”
Proceedings of the 2005 ASME IDETC/CIE Conferences
, Long Beach, CA, Sept. 24–8, Paper No. CIE-85544.
You do not currently have access to this content.