In reverse engineering, 2D profile curve reconstruction based on cross-sectional points is a very crucial step for surface reconstruction such as lofting surface, swept surface, translational surface, and rotational surface. Unlike the traditional constrained fitting method that assumes that the cross-sectional points have been segmented in advance, and that the initial fitted curves are very close to the points, we propose a nonrigid registration method, through which a template curve can be automatically transformed and deformed to best fit the cross-sectional points. Compared with constrained fitting, nonrigid registration does not need any data preprocessing such as sorting, segmentation, and parametrization. The simulated and real examples have demonstrated the effectiveness and superiority of nonrigid registration for 2D blade profile curve reconstruction.

1.
Varady
,
T.
,
Martin
,
R. R.
, and
Cox
,
J.
, 1997, “
Reverse Engineering of Geometric Models—An Introduction
,”
Comput.-Aided Des.
0010-4485,
29
(
4
), pp.
255
268
.
2.
Pratt
,
V.
, 1987, “
Direct Least-Squares Fitting of Algebraic Surfaces
,”
Comput. Graph.
0097-8930,
21
(
4
), pp.
145
152
.
3.
Pottmann
,
H.
, and
Randrup
,
T.
, 1998, “
Rotational and Helical Surface Approximation for Reverse Engineering
,”
Computing
0010-485X,
60
(
4
), pp.
307
322
.
4.
Marshall
,
D.
,
Lukacs
,
G.
, and
Martin
,
R. R.
, 2001, “
Robust Segmentation of Primitives From Range Data in the Presence of Geometric Degeneracy
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
23
(
5
), pp.
304
314
.
5.
Piegl
,
L.
, and
Tiller
,
W.
, 1995,
The NURBS Book
, 1st ed.,
Springer
,
Berlin
, Chap. 3.
6.
Ma
,
W.
, and
Kruth
,
J.
, 1995, “
Parameterization of Randomly Measured Points for Least Squares Fitting of B-Spline Curves and Surfaces
,”
Comput.-Aided Des.
0010-4485,
27
(
9
), pp.
663
75
.
7.
Weiss
,
V.
,
Andor
,
L.
,
Renner
,
G.
, and
Varady
,
T.
, 2002, “
Advanced Surface Fitting Techniques
,”
Comput.-Aided Des.
0010-4485,
19
(
1
), pp.
19
42
.
8.
Li
,
Y.
,
Huang
,
X.
,
Gong
,
C.
, and
Wang
,
K.
, 2004, “
An Engineering Rules Based Parameterization Approach for Turbine Blade Reverse Engineering
,”
Proceedings of the Geometric Modeling and Processing
, pp.
311
318
.
9.
Werghi
,
N.
,
Fisher
,
R. B.
,
Robertson
,
C.
, and
Ashbrook
,
A. P.
, 1999, “
Object Reconstruction by Incorporating Geometric Constraints in Reverse Engineering
,”
Comput.-Aided Des.
0010-4485,
31
(
4
), pp.
263
299
.
10.
Benko
,
P.
,
Martin
,
R. R.
, and
Varady
,
T.
, 2001, “
Algorithms for Reverse Engineering Boundary Representation Models
,”
Comput.-Aided Des.
0010-4485,
33
(
11
), pp.
839
851
.
11.
Benko
,
P.
,
Geza
,
K.
,
Varady
,
T.
,
Laszlo
,
A.
, and
Martin
,
R. R.
, 2002, “
Constrained Fitting in Reverse Engineering
,”
Comput. Aided Geom. Des.
0167-8396,
19
(
3
), pp.
173
205
.
12.
Li
,
Y.
,
Huang
,
X.
,
Gong
,
C.
, and
Zheng
,
J.
, 2005, “
Sketch Template Based Parametric Modeling in Reverse Engineering
,”
Comput.-Aided Design and Applications
,
2
(
1–4
), pp.
19
28
.
13.
Ke
,
Y.
,
Zhu
,
W.
,
Liu
,
F.
, and
Shi
,
X.
, 2006, “
Constrained Fitting for 2D Profile-Based Reverse Modeling
,”
Comput.-Aided Des.
0010-4485,
38
(
2
), pp.
101
114
.
14.
Piegl
,
L.
, and
Tiller
,
W.
, 1996, “
Algorithm for Approximate NURBS Skinning
,”
Comput.-Aided Des.
0010-4485,
28
(
9
), pp.
699
706
.
15.
Besl
,
P. J.
, and
McKay
,
N. D.
, 1992, “
A Method for Registration of 3-D Shapes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
14
(
2
), pp.
239
256
.
16.
Chui
,
H.
, and
Rangarajan
,
A.
, 2003, “
A New Point Matching Algorithm for Non-Rigid Registration
,”
Comput. Vis. Image Underst.
1077-3142,
89
(
2–3
), pp.
114
141
.
17.
Johnson
,
A. E.
, and
Hebert
,
M.
, 1997, “
Surface Registration by Matching Oriented Points
,”
Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling
, pp.
121
128
.
18.
Bae
,
K. H.
, and
Lichti
,
D. D.
, 2004, “
Automated Registration of Unorganised Point Clouds From Terrestrial Laser Scanners
,”
International Archives of Photogrammetry and Remote Sensing
,
Proceedings of the ISPRS Working Group V/2
, Instanbul, Vol.
XXXV
, Part B5, pp.
222
227
.
19.
Kagan
,
P.
,
Fischer
,
A.
, and
Bar-Yoseph
,
P. Z.
, 2003, “
Mechanically Based Models: Adaptive Refinement for B-Spline Finite Element
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
(
8
), pp.
1145
1175
.
20.
Schein
,
S.
, and
Elber
,
G.
, 2004, “
Discontinuous Free Form Deformations
,”
Proceedings of the Computer Graphics and Applications, 12th Pacific Conference
, pp.
227
236
.
21.
Sela
,
G.
,
Subag
,
J.
,
Lindblad
,
A.
,
Albocher
,
D.
,
Schein
,
S.
, and
Elber
,
G.
, 2007, “
Real-Time Haptic Incision Simulation Using FEM-Based Discontinuous Free-Form Deformation
,”
Comput.-Aided Des.
0010-4485,
39
(
8
), pp.
685
693
.
22.
Celniker
,
G.
, and
Gossard
,
D.
, 1991, “
Deformable Curve and Surface Finite-Elements for Free-Form Shape Design
,”
Comput. Graph.
0097-8930,
25
(
4
), pp.
257
266
.
23.
Dennis
,
J. E.
, and
Schnabel
,
R. B.
, 1996, “
Numerical Methods for Unconstrained Optimization and Nonlinear Equations
,”
Classics in Applied Mathematics 16
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
24.
Fletcher
,
R.
, 1987,
Practical Methods of Optimization
, 2nd ed.,
Wiley
,
New York
.
25.
Sederberg
,
T. W.
, and
Parry
,
S. R.
, 1986, “
Free-Form Deformation of Solid Geometric Models
,”
Comput. Graphics
0097-8493,
20
(
4
), pp.
151
160
.
26.
Coquillart
,
S.
, 1990, “
Extended Free-Form Deformation: A Sculpturing Tool for 3D Geometric Modeling
,”
Comput. Graphics
0097-8493,
24
(
4
), pp.
187
196
.
You do not currently have access to this content.