Piezoresponse force microscopy (PFM) is an atomic force microscopy-based approach utilized for measuring local properties of piezoelectric materials. The objective of this study is to propose a practical framework for simultaneous estimation of the local stiffness and piezoelectric properties of materials. For this, the governing equation of motion of a vertical PFM is derived at a given point on the sample. Using the expansion theorem, the governing ordinary differential equations of the system and their state-space representation are derived under applied external voltage. For the proof of the concept, the results obtained from both frequency and step responses of a PFM experiment are utilized to simultaneously identify the microcantilever parameters along with local spring constant and piezoelectric coefficient of a periodically poled lithium niobate sample. In this regard, a new parameter estimation strategy is developed for modal identification of system parameters under general frequency response. Results indicate good agreements between the identified model and the experimental data using the proposed modeling and identification framework. This method can be particularly applied for accurate characterization of mechanical and piezoelectric properties of biological species and cells.

1.
Terabe
,
K.
,
Nakamura
,
M.
,
Takekawa
,
S.
,
Kitamura
,
K.
,
Higuchi
,
S.
,
Gotoh
,
Y.
, and
Cho
,
Y.
, 2003, “
Microscale to Nanoscale Ferroelectric Domain and Surface Engineering of a Near Stoichiometric LiNbO3 Crystal
,”
Appl. Phys. Lett.
0003-6951,
82
(
3
), pp.
433
435
.
2.
Kalinin
,
S.
,
Bonnell
,
D.
,
Alvarez
,
T.
,
Lei
,
X.
,
Hu
,
Z.
, and
Ferris
,
J.
, 2002, “
Atomic Polarization and Local Reactivity on Ferroelectric Surfaces: A New Route Toward Complex Nanostructures
,”
Nano Lett.
1530-6984,
2
, pp.
589
593
.
3.
Gruverman
,
A.
, and
Kholkin
,
A.
, 2006, “
Nanoscale Ferroelectrics: Processing, Characterization and Future Trends
,”
Rep. Prog. Phys.
0034-4885,
69
, pp.
2443
2474
.
4.
Shao
,
R.
, and
Bonnell
,
A.
, 2004, “
Scanning Probes of Nonlinear Properties in Complex Materials
,”
Jpn. J. Appl. Phys.
0021-4922,
43
(
7
), pp.
4471
4476
.
5.
Eliseev
,
E. A.
,
Kalinin
,
S. V.
,
Jesse
,
S.
,
Bravina
,
S. L.
, and
Morozovska
,
A.
, 2007, “
Electromechanical Detection in Scanning Probe Microscopy: Tip Models and Material Contrast
,”
J. Appl. Phys.
0021-8979,
102
, p.
014109
.
6.
Felten
,
F.
,
Schneider
,
G.
,
Saldana
,
J.
, and
Kalinin
,
S.
, 2004, “
Modeling and Measurement of Surface Displacement in BaTiO3 Bulk Material in Piezoresponse Force Microscopy
,”
J. Appl. Phys.
0021-8979,
96
(
1
), pp.
563
568
.
7.
Guthner
,
P.
, and
Dransfeld
,
K.
, 1992, “
Local Poling of Ferroelectric Polymers by Scanning Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
61
, pp.
1137
1139
.
8.
Gruverman
,
A.
,
Tokumoto
,
H.
,
Prakash
,
A. S.
,
Aggarwal
,
S.
,
Yang
,
B.
,
Wuttig
,
M.
,
Ramesh
,
R.
,
Auciello
,
O.
, and
Venkatesan
,
T.
, 1997, “
Nanoscale Imaging of Domain Dynamics and Retention in Ferroelectric Thin Film
,”
Appl. Phys. Lett.
0003-6951,
71
, pp.
3492
3994
.
9.
Hidaka
,
T.
,
Maruyama
,
M.
,
Saitoh
,
M.
,
Mikoshiba
,
N.
,
Shimizu
,
M.
,
Shiosaki
,
T.
,
Wills
,
L. A.
,
Hiskes
,
R.
,
Dicarolis
,
S. A.
, and
Amano
,
J.
, 1996, “
Formation and Observation of 50 nm Polarized Domains in PbZr1−xTiO3 Thin Films Using Scanning Probe Microscope
,”
Appl. Phys. Lett.
0003-6951,
68
, pp.
2358
2359
.
10.
Kanilin
,
S.
,
Karapetian
,
E.
, and
Kachanov
,
M.
, 2004, “
Nanoelectromechanics of Piezoresponse Force Microscopy
,”
Phys. Rev. B
0163-1829,
70
, p.
184101
.
11.
Hong
,
S.
,
Woo
,
J.
,
Shin
,
H.
,
Joen
,
J.
,
Pak
,
Y.
,
Colla
,
E.
,
Settar
,
N.
,
Kim
,
E.
, and
No
,
K.
, 2001, “
Principle of Ferroelectric Domain Imaging Using Atomic Force Microscopy
,”
J. Appl. Phys.
0021-8979,
89
(
2
), pp.
1377
1386
.
12.
Jesse
,
S.
,
Baddorf
,
A. P.
, and
Kalinin
,
S.
, 2006, “
Dynamic Behavior in Piezoresponse Force Microscopy
,”
Nanotechnology
0957-4484,
17
, pp.
1615
1628
.
13.
Salehi-Khojin
,
A.
,
Jalili
,
N.
, and
Mahmoodi
,
S. N.
, 2009, “
Vibration Analysis of Vector Piezoresponse Force Microscopy With Coupled Motion
,”
J. Sound Vib.
0022-460X,
322
, pp.
1081
1099
.
14.
Salapaka
,
M. V.
,
Bergh
,
H. S.
,
Lai
,
J.
,
Majumdar
,
A.
, and
McFarland
,
E.
, 1997, “
Multimode Noise Analysis of Cantilevers for Scanning Probe Microscopy
,”
J. Appl. Phys.
0021-8979,
81
(
6
), pp.
2480
2487
.
15.
Salehi-Khojin
,
A.
,
Bashash
,
S.
,
Jalili
,
N.
,
Muller
,
M.
, and
Berger
,
R.
, 2009, “
Nanomechanical Cantilever Active Probes for Ultrasmall Mass Detection
,”
J. Appl. Phys.
0021-8979,
105
(
1
), p.
013506
.
16.
Kalinin
,
S.
, and
Bonnell
,
D.
, 2002, “
Imaging Mechanism of Piezoresponse Force Microscopy of Ferroelectric Surfaces
,”
Phys. Rev. B
0163-1829,
65
, p.
125408
.
17.
Myers
,
L. E.
, and
Bosenberg
,
W. R.
, 1997, “
Periodically Poled Lithium Niobate and Quasi-Phase-Matched Optical Parametric Oscillators
,”
IEEE J. Quantum Electron.
0018-9197,
33
(
10
), pp.
1663
1672
.
18.
Matyas
,
J.
, 1965, “
Random Optimization
,”
Autom. Remote Control (Engl. Transl.)
0005-1179,
22
, pp.
246
253
.
You do not currently have access to this content.