Past research on hybrid electric vehicles (HEVs) focused primarily on improving their fuel economy. Emission reduction is another important performance attribute that needs to be addressed. When emissions are considered for hybrid vehicles with a gasoline engine, horizon-based optimization methodologies should be used because the light-off of the three-way catalytic converter heavily depends on the warming-up of catalyst temperature. In this paper, we propose a systematic design method for a cold-start supervisory control algorithm based on the dynamic programming (DP) methodology. First, a system-level parallel HEV model is developed to efficiently predict tailpipe emissions as well as fuel economy. The optimal control problem for minimization of cold-start emissions and fuel consumption is then solved via DP. Since DP solution cannot be directly implemented as a real-time controller, more useful control strategies are extracted from DP solutions over the entire state space via the comprehensive extraction method. The extracted DP results indicate that the engine on/off, gear-shift, and power-split strategies must be properly adjusted to achieve fast catalyst warm-up and low cold-start tailpipe emissions. Based on DP results, we proposed a rule-based control algorithm that is easy to implement and adjust while achieving near-optimal fuel economy and emission performance.

References

1.
Brahma
,
A.
,
Guezennec
,
Y.
, and
Rizzoni
,
G.
, 2000, “
Dynamic Optimization of Mechanical/Electrical Power Flow in Parallel Hybrid Electric Vehicles
,”
Proceedings of the Fifth International Symposium in Advanced Vehicle Control
,
Ann Arbor
,
MI
.
2.
Schouten
,
N.
,
Salman
,
M.
, and
Kheir
,
N.
, 2002, “
Fuzzy Logic Control for Parallel Hybrid Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
10
(
3
), pp.
460
468
.
3.
Paganelli
,
G.
,
Delprat
,
S.
,
Guerra
,
T. M.
,
Rimaux
,
J.
, and
Santin
,
J. J.
, 2002, “
Equivalent Consumption Minimization Strategy for Parallel Hybrid Powertrains
,”
Proceedings of the Fall VTC-01 Conference
,
Atlantic City, NJ
.
4.
Lin
,
C. -C. C.-C.
,
Peng
,
H.
,
Grizzle
,
J. W.
, and
Kang
,
J. -M., J.-M.,
, 2003, “
Power Management Strategy for a Parallel Hybrid Electric Truck
,”
IEEE Trans. Control Syst. Technol.
,
11
(
6
), pp.
839
849
.
5.
Delprat
,
S.
,
Lauber
,
J.
,
Guerra
,
T. M.
, and
Rimaux
,
J.
, 2004, “
Control of a Parallel Hybrid Powertrain: Optimal Control
,”
IEEE Trans. Veh. Technol.
,
53
(
3
), pp.
872
881
.
6.
Won
,
J. -S. J.-S.
,
Langari
,
R.
, and
Ehsani
,
M.
, 2005, “
An Energy Management and Charge Sustaining Strategy for a Parallel Hybrid Vehicle With CVT
,”
IEEE Trans. Control Syst. Technol.
,
13
(
2
), pp.
313
320
.
7.
Sciarretta
,
A.
, and
Guzzella
,
L.
, 2007, “
Control of Hybrid Electric Vehicles: Optimal Energy-Management Strategies
,”
IEEE Control Syst. Mag.
,
27
(
2
), pp.
60
70
.
8.
Liu
,
J.
, and
Peng
,
H.
, 2008, “
Modeling and Control of a Power-Split Hybrid Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
16
(
6
), pp.
1242
1251
.
9.
Dieselnet
, “
Emission Standards–United States–California
,” http://www.dieselnet.com/standards/us/ld_ca.phphttp://www.dieselnet.com/standards/us/ld_ca.php
10.
Koltsakis
,
G. C.
,
Konstantinidis
,
P. A.
, and
Stamatelos
,
A. M.
, 1997, “
Development and Application Range of Mathematical Models for 3-Way Catalytic Converters
,”
Appl. Catal., B
,
12
, pp.
161
191
.
11.
Chan
,
S. H.
,
Hoang
,
D. L.
, and
Zhou
,
P. L.
, 2000, “
Heat Transfer and Chemical Kinetics in the Exhaust System of a Cold-Start Engine Fitted With a Three-Way Catalytic Converter
,”
Proc. Inst. Mech. Eng., Part D
(J. Automob. Eng.),
214
, pp.
765
777
.
12.
Kallenbach
,
J.
,
Florchinger
,
P.
, and
Heibel
,
A.
, 1999, “
Modeling of Automotive Aftertreatment Catalysts
,” SAE Paper No. 1999-01-3043.
13.
Laing
,
P. M.
,
Shane
,
M. D.
,
Son
,
S.
,
Adamczyk
,
A. A.
, and
Li
,
P.
, 1999, “
A Simplified Approach to Modeling Exhaust System Emissions: SIMTWC
,” SAE Paper No. 1999-01-3476.
14.
Shen
,
H.
,
Shamim
,
T.
, and
Sengupta
,
S.
, 1999, “
An Investigation of Catalytic Converter Performances During Cold Starts
,” SAE Paper No. 1999-01-3473.
15.
Wurzenberger
,
J. C.
,
Auzinger
,
G.
,
Heinzle
,
R.
, and
Wanker
,
R.
, 2006, “
1D Modeling of Reactive Fluid Dynamics, Cold Start Behavior of Exhaust Systems
,” SAE Paper No. 2006-01-1544.
16.
Eriksson
,
L.
, 2002, “
Mean Value Models for Exhaust System Temperatures
,” SAE Paper No. 2002-01-0374.
17.
Murrell
,
J. D.
,
Lewis
,
G. M.
,
Baker
,
D. M.
, and
Assanis
,
D. N.
, 1997 “
An Early-Design Methodology for Predicting Transient Fuel Economy and Catalyst-Out Exhaust Emissions
,” SAE Paper No. 971838.
18.
Brandt
,
E. P.
,
Wang
,
Y.
, and
Grizzle
,
J. W.
, 2000, “
Dynamic Modeling of a Three-Way Catalyst for SI Engine Exhaust Emission Control
,”
IEEE Trans. Control Syst. Technol.
,
8
(
5
), pp.
767
776
.
19.
Sun
,
J.
, and
Sivashankar
,
N.
, 1998, “
Issues in Cold Start Emission Control for Automotive IC Engines
,”
Proceedings of the American Control Conference
,
Philadelphia, PA
.
20.
Shaw
,
B. T.
,
Fischer
,
G. D.
, and
Hedrick
,
J. K.
, 2002, “
A Simplified Cold-Start Catalyst Thermal Model to Reduce Hydrocarbon Emissions
,”
IFAC 15th Triennial World Congress
,
Barcelona, Spain
.
21.
Sanketi
,
P. R.
,
Hedrick
,
J. K.
, and
Kaga
,
T.
, 2005, “
A Simplified Catalytic Converter Model for Automotive Cold-Start Control Applications
,”
Proceedings of the IMECE 2005
,
Orlando, FL
.
22.
Wilcutts
,
M. A.
, and
Hedrick
,
J. K.
, 2007, “
Model-Based Control for Automotive Cold Start Applications
,”
Veh. Syst. Dyn.
,
45
(
5
), pp.
399
411
.
23.
Kolmanovsky
,
I.
,
Nieuwstadt
,
M.
, and
Sun
,
J.
, 1999, “
Optimization of Complex Powertrain Systems for Fuel Economy and Emissions
,”
IEEE International Conference on Control Applications
,
HI
.
24.
Johnson
,
V.
,
Wipke
,
K.
, and
Rausen
,
D.
, 2000, “
HEV Control Strategy for Real-Time Optimization of Fuel Economy and Emissions
,” SAE Paper No. 2000-01-1543.
25.
Lukic
,
S. M.
, and
Emadi
,
A.
, 2004, “
Emissions and Fuel Economy Trade-Off for Hybrid Vehicles Using Fuzzy Logic
,”
Math. Comput. Simul.
,
66
(
2–3
), pp.
155
172
.
26.
Tate
,
E.
, 2006, “
Techniques for HEV Controller Synthesis
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
27.
Rizzoni
,
G.
,
Guezennec
,
Y.
,
Brahma
,
A.
,
Wei
,
X.
, and
Miller
,
T.
, 2006, “
VP-SIM: A Unified Approach to Energy and Power Flow Modeling Simulation and Analysis of Hybrid Vehicles
,” SAE Paper No. 2000-01-1565.
28.
Rousseau
,
A.
,
Pagerit
,
S.
,
Monnet
,
G.
, and
Feng
,
A.
, 2001, “
The New PNGV System Analysis Toolkit PSAT V4.1—Evolution and Improvement
,” SAE Paper No. 2001-01-2536.
29.
Miller
,
J. M.
, 2004,
Propulsion Systems for Hybrid Vehicles
,
The Institution of Engineering and Technology
,
London, United Kingdom
.
30.
Bellman
,
R.
, 1957,
Dynamic Programming
,
Princeton University Press
,
Princeton, NJ
.
31.
Bertsekas
,
D. P.
, 2005,
Dynamic Programming and Optimal Control
, 3rd ed.,
Athena Scientific
,
Nashua, NH
.
32.
Kirk
,
D.
, 1970,
Optimal Control Theory: An Introduction
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
33.
Shaw
,
B. T.
, 2002, “
Modeling and Control of Automotive Coldstart Hydrocarbon Emissions
,” Ph.D. thesis, University of California, Berkeley, CA.
34.
Onorati
,
A.
,
D’Errico
,
G.
, and
Ferrari
,
G.
, 2000, “
1D Fluid Dynamic Modeling of Unsteady Reacting Flows in the Exhaust System With Catalytic Converter for SI Engines
,” SAE Paper No. 2000-01-0210.
You do not currently have access to this content.