In this paper, we introduce a new concept of stochastic finite-time stability for a class of nonlinear Markovian switching systems with impulsive effects. Based on the linear matrix inequality approach, sufficient conditions for the system to be stochastic finite-time stable are derived. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed conditions.

References

1.
Boukas
,
E.
, 2006,
Stochastic Switching Systems: Analysis and Design
,
Birkhäuser
,
Boston
.
2.
Feng
,
J.
,
Lam
,
J.
, and
Shu
,
Z.
, 2010, “
Stabilization of Markovian Systems via Probability Rate Synthesis and Output Feedback
,”
IEEE Trans. Autom. Control
,
55
(
3
), pp.
773
777
.
3.
Wang
,
Z.
,
Liu
,
Y.
, and
Liu
,
X.
, 2010, “
Exponential Stabilization of a Class of Stochastic System With Markovian Jump Parameters and Mode-Dependent Mixed Time-Delays
,”
IEEE Trans. Autom. Control
,
55
(
7
), pp.
1656
1662
.
4.
Nguang
,
S.
, and
Shi
,
P.
, 2006, “
Robust h Output Feedback Control Design for Takagi-Sugeno Systems With Markovian Jumps: A Linear Matrix Inequality Approach
,”
ASME J. Dyn. Syst., Meas., Control
,
128
(
3
), pp.
617
625
.
5.
Zhang
,
H.
,
Feng
,
G.
, and
Dang
,
C.
, 2009, “
Stability Analysis and h Control for Uncertain Stochastic Piecewise-Linear Systems
,”
IET Control Theory Appl.
,
3
(
8
), pp.
1059
1069
.
6.
Huang
,
R.
,
Lin
,
Y.
, and
Lin
,
Z.
, 2010, “
Robust Fuzzy Tracking Control Design for a Class of Nonlinear Stochastic Markovian Jump Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
5
),
510051
.
7.
Lakshmikantham
,
V.
,
Bainov
,
D.
, and
Simeonov
,
P.
, 1989,
Theory of Impulsive Differential Equations
,
World Scientific
,
Singapore
.
8.
Yang
,
T.
, 2001,
Impulsive Systems and Control: Theory and Applications
,
Springer
,
Berlin
.
9.
Liu
,
B.
, 2008, “
Stability of Solutions for Stochastic Impulsive Systems via Comparison Approach
,”
IEEE Trans. Autom. Control
,
53
(
9
), pp.
2128
2133
.
10.
Chen
,
W.
, and
Zheng
,
W.
, 2009, “
Input-to-State Stability and Integral Input-to-State Stability of Nonlinear Impulsive Systems With Delays
,”
Automatica
,
45
(
6
), pp.
1481
1488
.
11.
Sakthivel
,
R.
,
Mahmudov
,
N.
, and
Lee
,
S.
, 2009, “
Controllability of Non-Linear Impulsive Stochastic Systems
,”
Int. J. Control
,
82
(
5
), pp.
801
807
.
12.
Lu
,
J.
,
Ho
,
D.
, and
Cao
,
J.
, 2010, “
A Unified Synchronization Criterion for Impulsive Dynamical Networks
,”
Automatica
,
46
(
7
), pp.
1215
1221
.
13.
Wu
,
H.
, and
Sun
,
J.
, 2006, “
p-Moment Stability of Stochastic Differential Equations With Impulsive Jump and Markovian Switching
,”
Automatica
,
42
(
10
), pp.
1753
1759
.
14.
Pan
,
S.
,
Sun
,
J.
, and
Zhao
,
S.
, 2008, “
Stabilization of Discrete-Time Markovian Jump Linear Systems via Time-Delayed and Impulsive Controllers
,”
Automatica
,
44
(
11
), pp.
2954
2958
.
15.
Dong
,
Y.
, and
Sun
,
J.
, 2008, “
On Hybrid Control of a Class of Stochastic Non-Linear Markovian Switching Systems
,”
Automatica
,
44
(
4
), pp.
990
995
.
16.
Raouf
,
J.
, and
Boukas
,
E.
, 2009, “
Stabilisation of Singular Markovian Jump Systems With Discontinuities and Saturating Inputs
,”
IET Control Theory Appl.
,
3
(
7
), pp.
971
982
.
17.
Kamenkov
,
G.
, 1953, “
On Stability of Motion Over a Finite Interval of Time
,”
J. Appl. Math. Mech.
,
17
, pp.
529
540
.
18.
Lebedev
,
A.
, 1954, “
The Problem of Stability in a Finite Interval of Time
,”
J. Appl. Math. Mech.
,
18
, pp.
75
94
.
19.
Lebedev
,
A.
, 1954, “
On Stability of Motion During a Given Interval of Time
,”
J. Appl. Math. Mech.
,
18
, pp.
139
148
.
20.
Dorato
,
P.
, 1961, “
Short-Time Stability in Linear Time-Varying Systems
,”
Proceedings of the IRE International Convention Record
, Part 4, pp.
83
87
.
21.
Weiss
,
L.
, and
Infante
,
E.
, 1967, “
Finite Time Stability Under Perturbing Forces and on Product Spaces
,”
IEEE Trans. Autom. Control
,
12
(
1
), pp.
54
59
.
22.
Amato
,
F.
,
Ariola
,
M.
, and
Dorato
,
P.
, 2001, “
Finite-Time Control of Linear Systems Subject to Parametric Uncertainties and Disturbances
,”
Automatica
,
37
(
9
), pp.
1459
1463
.
23.
Liu
,
L.
, and
Sun
,
J.
, 2008, “
Finite-Time Stabilization of Linear Systems via Impulsive Control
,”
Int. J. Control
,
81
(
6
), pp.
905
909
.
24.
Amato
,
F.
,
Ambrosino
,
R.
,
Ariola
,
M.
, and
Cosentino
,
C.
, 2009, “
Finite-Time Stability of Linear Time-Varying Systems With Jumps
,”
Automatica
,
45
(
5
), pp.
1354
1358
.
25.
Zhao
,
S.
,
Sun
,
J.
, and
Liu
,
L.
, 2008. “
Finite-Time Stability of Linear Time-Varying Singular Systems With Impulsive Effects
,”
Int. J. Control
,
81
(
11
), pp.
1824
1829
.
26.
Xu
,
J.
, and
Sun
,
J.
, 2010, “
Finite-Time Stability of Linear Time-Varying Singular Impulsive Systems
,”
IET Control Theory Appl.
,
4
(
10
), pp.
2239
2244
.
27.
Amato
,
F.
,
Ariola
,
M.
, and
Cosentino
,
C.
, 2010, “
Finite-Time Control of Discrete-Time Linear Systems: Analysis and Design Conditions
,”
Automatica
,
46
(
5
), pp.
919
924
.
28.
Amato
,
F.
,
Cosentino
,
C.
, and
Merola
,
A.
, 2010, “
Sufficient Conditions for Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems
,”
IEEE Trans. Autom. Control
,
55
(
2
), pp.
430
434
.
29.
He
,
S.
, and
Liu
,
F.
, 2010, “
Stochastic Finite-Time Stabilization for Uncertain Jump Systems via State Feedback
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
3
),
345041
.
30.
Petersen
,
I.
, 1987, “
A Stabilization Algorithm for a Class of Uncertain Linear Systems
,”
Syst. Control Lett.
,
8
(
4
), pp.
351
357
.
31.
Skorokhod
,
A.
, 1989,
Asymptotic Methods in the Theory of Stochastic Differential Equations
,
American Mathematical Society
,
Providence
.
32.
Gahinet
,
P.
,
Nemirovskii
,
A.
,
Laub
,
A.
, and
Chilali
,
M.
, 1995,
The LMI Control Toolbox
,
The Mathworks Inc.
,
Natick
.
You do not currently have access to this content.