Wind energy is a clean and renewable source for electricity generation. To reduce the costs associated with wind power generation, development of a control methodology that maximizes the wind energy capture and mitigates the turbine fatigue loading is desired. In this paper, a new adaptive gain modified optimal torque controller (AGMOTC) for wind turbine partial load operation is presented. A gain-scheduling technique with an internal proportional integral (PI) control is developed to accelerate the controller's convergence to a reference tip speed ratio (TSR). The reference TSR is then adjusted to its optimal value in real-time through an adaptive algorithm capable of rejecting model uncertainties and estimation errors of the control gain. A fatigue mitigation method is also designed to reduce the impact of exacerbated tower bending moments due to the resonance effect. The proposed AGMOTC is evaluated based on the National Renewable Energy Laboratory (NREL) 5 MW wind turbine model using the NREL fast simulator. Simulation results have shown that the AGMOTC has improved efficiency and robustness in wind energy capture and reduced tower fatigue loading as compared to the traditional control technique.

References

1.
Wiser
,
R.
,
Bolinger
,
M.
,
Barbose
,
G.
,
Darghouth
,
N.
,
Hoen
,
B.
,
Mills
,
A.
,
Weaver
,
S.
,
Porter
,
K.
,
Buckley
,
M.
,
Oteri
,
F.
, and
Tegen
,
S.
,
2014
, “
2013 Wind Technologies Market Report
,” U.S. Department of Energy, Oak Ridge, TN, Technical Report No. DOE/GO-102014-4459.
2.
Sutherland
,
H.
,
1999
, “
On the Fatigue Analysis of Wind Turbines
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND99-0089.
3.
Bossanyi
,
E. A.
,
2003
, “
Wind Turbine Control for Load Reduction
,”
Wind Energy
,
6
(
3
), pp.
229
244
.
4.
Hall
,
J. F.
,
Mecklenborg
,
C. A.
,
Chen
,
D.
, and
Pratap
,
S. B.
,
2011
, “
Wind Energy Conversion With a Variable-Ratio Gearbox: Design and Analysis
,”
Renewable Energy
,
36
(
3
), pp.
1075
1080
.
5.
Hall
,
J. F.
, and
Chen
,
D.
,
2013
, “
Dynamic Optimization of Drivetrain Gear Ratio to Maximize Wind Turbine Power Generation—Part 1: System Model and Control Framework
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
1
), p.
011016
.
6.
Shaltout
,
M. L.
,
Zhao
,
N.
,
Hall
,
J. F.
, and
Chen
,
D.
,
2012
, “
Wind Turbine Gearbox Control for Maximum Energy Capture and Prolonged Gear Life
,”
ASME
Paper No. DSCC2012-MOVIC2012-8719.
7.
Shaltout
,
M. L.
,
Hall
,
J. F.
, and
Chen
,
D.
,
2014
, “
Optimal Control of a Wind Turbine With a Variable Ratio Gearbox for Maximum Energy Capture and Prolonged Gear Life
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031007
.
8.
Abdullah
,
M. A.
,
Yatim
,
A. H. M.
, and
Tan
,
C. W.
,
2011
, “
A Study of Maximum Power Point Tracking Algorithms for Wind Energy System
,”
IEEE First Conference on Clean Energy and Technology
(
CET
), Kuala Lumpur, Malaysia, June 27–29, pp.
321
326
.
9.
Abdullah
,
M. A.
,
Yatim
,
A. H. M.
,
Tan
,
C. W.
, and
Saidur
,
R.
,
2012
, “
A Review of Maximum Power Point Tracking Algorithms for Wind Energy Systems
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3220
3227
.
10.
Kazmi
,
S. M. R.
,
Goto
,
H.
,
Guo
,
H.-J.
, and
Ichinokura
,
O.
,
2010
, “
Review and Critical Analysis of the Research Papers Published Till Date on Maximum Power Point Tracking in Wind Energy Conversion System
,”
IEEE Energy Conversion Congress and Exposition
(
ECCE
), Atlanta, GA, pp.
4075
4082
.
11.
Na
,
W.
,
Johnson
,
K. E.
, and
Wright
,
A. D.
,
2013
, “
Comparison of Strategies for Enhancing Energy Capture and Reducing Loads Using LIDAR and Feedforward Control
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1129
1142
.
12.
Schlipf
,
D.
,
Fleming
,
P.
,
Kapp
,
S.
,
Scholbrock
,
A.
,
Haizmann
,
F.
,
Belen
,
F.
, and
Wright
,
A.
,
2013
, “
Direct Speed Control Using LIDAR and Turbine Data
,”
American Control Conference
(
ACC
), Washington, DC, June 17–19, pp.
2208
2213
.
13.
Rettenmeier
,
A.
,
Martin
,
K.
,
Schlipf
,
D.
,
Kapp
,
S.
,
Anger
,
J.
,
Bischoff
,
O.
,
Hofs
,
M.
,
Hofsäß
,
M.
, and
Kühn
,
M.
,
2011
, “
Prospects of Optimization of Energy Production by LIDAR Assisted Control of Wind Turbines
,”
EWEA 2011 Conference
, Brussels, Belgium, Mar. 14–17, pp.
1
10
.
14.
Gerber
,
B. S.
,
Herr
,
S.
, and
Pierce
,
K. G.
,
2012
, “
Variable Tip Speed Ratio Tracking Control for Wind Turbines
,” General Electric Company, New York, U.S. Patent No. US8215906 B2.
15.
Johnson
,
K. E.
,
Fingersh
,
L. J.
,
Balas
,
M. J.
, and
Pao
,
L. Y.
,
2004
, “
Methods for Increasing Region 2 Power Capture on a Variable-Speed Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
126
(
4
), pp.
1092
1100
.
16.
Johnson
,
K. E.
,
Pao
,
L. Y.
,
Balas
,
M. J.
, and
Fingersh
,
L. J.
,
2006
, “
Control of Variable-Speed Wind Turbines: Standard and Adaptive Techniques for Maximizing Energy Capture
,”
IEEE Control Syst.
,
26
(
3
), pp.
70
81
.
17.
Song
,
Y. D.
,
Dhinakaran
,
B.
, and
Bao
,
X. Y.
,
2000
, “
Variable Speed Control of Wind Turbines Using Nonlinear and Adaptive Algorithms
,”
J. Wind Eng. Ind. Aerodyn.
,
85
(
3
), pp.
293
308
.
18.
Freeman
,
J.
, and
Balas
,
M.
,
1999
, “
An Investigation of Variable Speed Horizontal-Axis Wind Turbines Using Direct Model-Reference Adaptive Control
,”
AIAA
Paper No. 99-0028.
19.
Burton
,
T.
,
Jenkins
,
N.
,
Sharpe
,
D.
, and
Bossanyi
,
E.
,
2011
,
Wind Energy Handbook
,
Wiley
,
Hoboken, NJ
.
20.
Bossanyi
,
E.
,
2005
, “
Further Load Reductions With Individual Pitch Control
,”
Wind Energy
,
8
(
4
), pp.
481
485
.
21.
Wang
,
N.
,
Johnson
,
K. E.
, and
Wright
,
A. D.
,
2012
, “
FX-RLS-Based Feedforward Control for LIDAR-Enabled Wind Turbine Load Mitigation
,”
IEEE Trans. Control Syst. Technol.
,
20
(
5
), pp.
1212
1222
.
22.
Dunne
,
F.
,
Pao
,
L. Y.
,
Wright
,
A. D.
,
Jonkman
,
B.
, and
Kelley
,
N.
,
2011
, “
Adding Feedforward Blade Pitch Control to Standard Feedback Controllers for Load Mitigation in Wind Turbines
,”
Mechatronics
,
21
(
4
), pp.
682
690
.
23.
Zhang
,
Y.
,
Cheng
,
M.
, and
Chen
,
Z.
,
2013
, “
Proportional Resonant Individual Pitch Control for Mitigation of Wind Turbines Loads
,”
IET Renewable Power Gener.
,
7
(
3
), pp.
191
200
.
24.
Smit
,
J.
,
2013
, “
Increased Energy Yield Using the Smart Rotor
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
25.
Schlipf
,
D.
,
Schlipf
,
D. J.
, and
Kühn
,
M.
,
2013
, “
Nonlinear Model Predictive Control of Wind Turbines Using LIDAR
,”
Wind Energy
,
16
(
7
), pp.
1107
1129
.
26.
Jonkman
,
J. M.
, and
Buhl
,
M. L.
, Jr.
,
2005
, “
FAST User's Guide
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-38230.
27.
Østergaard
,
K. Z.
,
Brath
,
P.
, and
Stoustrup
,
J.
,
2007
, “
Estimation of Effective Wind Speed
,”
J. Phys.: Conf. Ser.
,
75
(
1
), p.
012082
.
28.
Buhl
,
M.
,
2004
,
WT Perf User's Guide: Version 3.1
,
National Renewable Energy Laboratory
,
Golden, CO
.
29.
Bianchi
,
F. D.
,
de Battista
,
H.
, and
Mantz
,
R. J.
,
2006
,
Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design
,
Springer
,
London
.
30.
Bir
,
G. S.
,
2005
, “
User's Guide to BModes
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-39133.
31.
Ma
,
Z.
,
Shaltout
,
M. L.
, and
Chen
,
D.
,
2014
, “
Adaptive Gain Modified Optimal Torque Controller for Wind Turbine Partial Load Operation
,”
ASME
Paper No. DSCC2014-5921.
32.
Jonkman
,
B. J.
,
2009
, “
TurbSim User's Guide: Version 1.50
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-46198.
33.
“Wind Energy Resource Atlas of the United States,” http://rredc.nrel.gov/wind/pubs/atlas/tables/1-1t.html
34.
Manwell
,
J.
,
2009
,
Wind Energy Explained: Theory, Design and Application
,
Wiley
,
Chichester, UK
.
35.
Hayman
,
G.
, and
Buhl
,
M.
,
2012
,
MLife User's Guide
,
National Renewable Energy Laboratory
,
Golden, CO
.
You do not currently have access to this content.