A linear dashpot is a common equipment used in shock and vibration isolation. It has been shown theoretically that the vibration isolation performance can be significantly improved by a damping profile that depends on the piston relative position. In this study, a position-dependent damping profile is realized by using electromagnetic principles. The idea is to have multiple coil windings on the outer cylinder and to use a magnet as a piston. The damping profile is tuned by changing the number of turns at each coil. As a result of the magnet-coil arrangement, the architecture also has the capability of being regenerative. A unique experimental setup is constructed that measures damping electrically in a multiple coil arrangement. Least-squares optimization method is used to tune the number of turns. It is shown that the coil turns can be successfully tailored to realize a desired damping profile. The position-dependent damping architecture has the potential to be used in future regenerative dampers.

References

1.
Mansour
,
H.
,
Arzanpour
,
S.
, and
Golnaraghi
,
F.
,
2012
, “
Design of a Solenoid Valve Based Active Engine Mount
,”
J. Vib. Control
,
18
(
8
), pp.
1221
1232
.
2.
Peng
,
Z. K.
,
Meng
,
G.
,
Lang
,
Z.
,
Zhang
,
W. M.
, and
Chu
,
F. L.
,
2012
, “
Study of the Effects of Cubic Nonlinear Damping on Vibration Isolations Using Harmonic Balance Method
,”
Int. J. Non-Linear Mech.
,
47
(
10
), pp.
1073
1080
.
3.
Lang
,
Z. Q.
,
Billings
,
S. A.
,
Tomlinson
,
G. R.
, and
Yue
,
R.
,
2006
, “
Analytical Description of the Effects of System Nonlinearities on Output Frequency Responses: A Case Study
,”
J. Sound Vib.
,
295
(
3–5
), pp.
584
601
.
4.
Lang
,
Z. Q.
,
Jing
,
X. J.
,
Billings
,
S. A.
,
Tomlinson
,
G. R.
, and
Peng
,
Z. K.
,
2009
, “
Theoretical Study of the Effects of Nonlinear Viscous Damping on Vibration Isolation of SDOF Systems
,”
J. Sound Vib.
,
323
(
1–2
), pp.
352
365
.
5.
Peng
,
Z. K.
, and
Lang
,
Z. Q.
,
2008
, “
The Effects of Nonlinearity on the Output Frequency Response of a Passive Engine Mount
,”
J. Sound Vib.
,
318
(
1–2
), pp.
313
328
.
6.
Haque
,
M. M.
,
Ahmed
,
A. K. W.
, and
Sankar
,
S.
,
1995
, “
Simulation of Displacement Sensitive Non-Linear Dampers Via Integral Formulation of Damping Force Characterization
,”
J. Sound Vib.
,
187
(
1
), pp.
95
109
.
7.
Topaloglu
,
N.
,
Aksekili
,
A. A.
, and
Yegin
,
B.
,
2011
, “
A Displacement Dependent Damper for a Vibration Based Energy Harvester
,”
10th International Conference on Sustainable Energy Technologies
(
SET’11
),
Istanbul, Turkey
, Sept. 4–7, Paper No. 403.
8.
Dixon
,
J. C.
,
2007
,
The Shock Absorber Handbook
, 2nd ed.,
Wiley
, West Sussex, UK, Chap. 7.
9.
Vanbrabant
,
R.
,
2006
, “
Stroke Dependent Damping
,” U.S. Patent No. 20,060,086,581.
10.
Ellifson
,
E. S.
,
Dillman
,
P. S.
, and
Zuleger
,
J. J.
,
2013
, “
Position Dependent Damper for a Vehicle Suspension System
,” U.S. Patent No. 20,130,249,183.
11.
Rottenberger
,
T.
,
Kirchner
,
R.
, and
Barnickel
,
R.
,
2013
, “
Vibration Damper With Stroke-Dependent Damping Force
,”
U.S. Patent No. 8,443,948
.
12.
Zhou
,
G.
, and
Sun
,
L.
,
2012
, “
System of Smart Colloidal Dampers With Controllable Damping Curves Using Magnetic Field and Method of Using the Same
,”
U.S. Patent No. 8,317,002
.
13.
Krefeld
,
A.
,
2009
, “
Device for Amplitude-Dependent Damper
,”
U.S. Patent No. 7,628,256
.
14.
Heyn
,
S.
, and
Zeissner
,
B.
,
2013
, “
Vibration Damper With Stroke-Dependent Damping Force
,”
U.S. Patent No. 8,479,895
.
15.
Goldner
,
R. B.
, and
Zerigian
,
P.
,
2005
, “
Electromagnetic Linear Generator and Shock Absorber
,”
U.S. Patent No. 6,952,060
.
16.
Wenzel
,
T.
,
2013
, “
ZF and Levant Power Develop the World's First Fully Active, Regenerative Suspension for Automobiles
.”
17.
Zhang
,
J.
,
Peng
,
Z.
,
Zhang
,
L.
, and
Zhang
,
Y.
,
2013
, “
A Review on Energy-Regenerative Suspension Systems for Vehicles
,”
World Congress on Engineering 2013
(
WCE 2013
),
London
, July 3–5, Vol.
III
, pp.
3
6
.
18.
Nakano
,
K.
,
2004
, “
Combined Type Self-Powered Active Vibration Control of Truck Cabins
,”
Veh. Syst. Dyn.
,
41
(
6
), pp.
449
473
.
19.
Huang
,
K.
,
Yu
,
F.
, and
Zhang
,
Y.
,
2011
, “
Active Controller Design for an Electromagnetic Energy-Regenerative Suspension
,”
Int. J. Automot. Technol.
,
12
(
6
), pp.
877
885
.
20.
Li
,
Z.
,
Zuo
,
L.
,
Kuang
,
J.
, and
Luhrs
,
G.
,
2013
, “
Energy-Harvesting Shock Absorber With a Mechanical Motion Rectifier
,”
Smart Mater. Struct.
,
22
(
2
), p.
025008
.
21.
Choi
,
Y. T.
, and
Wereley
,
N. M.
,
2009
, “
Self-Powered Magnetorheological Dampers
,”
ASME J. Vib. Acoust.
,
131
, pp.
44
50
.
22.
Fang
,
Z.
,
Guo
,
X.
,
Xu
,
L.
, and
Zhang
,
H.
,
2013
, “
Experimental Study of Damping and Energy Regeneration Characteristics of a Hydraulic Electromagnetic Shock Absorber
,”
Adv. Mech. Eng.
,
2013
, pp.
1
9
.
23.
Gupta
,
A.
,
Jendrzejczyk
,
J. A.
,
Mulcahy
,
T. M.
, and
Hull
,
J. R.
,
2006
, “
Design of Electromagnetic Shock Absorbers
,”
Int. J. Mech. Mater. Des.
,
3
(
3
), pp.
285
291
.
24.
Ebrahimi
,
B.
,
Bolandhemmat
,
H.
,
Khamesee
,
M. B.
, and
Golnaraghi
,
F.
,
2011
, “
A Hybrid Electromagnetic Shock Absorber for Active Vehicle Suspension System
,”
Veh. Syst. Dyn.
,
49
(
1–2
), pp.
311
332
.
25.
Singh
,
S.
, and
Satpute
,
N. V.
,
2015
, “
Design and Analysis of Energy-Harvesting Shock Absorber With Electromagnetic and Fluid Damping
,”
J. Mech. Eng. Sci.
,
29
(
4
), pp.
1591
1605
.
26.
Tang
,
X.
,
Lin
,
T.
, and
Zuo
,
L.
,
2014
, “
Design and Optimization of a Tubular Linear Electromagnetic Vibration Energy Harvester
,”
IEEE/ASME Trans. Mech.
,
19
(
2
), pp.
615
622
.
27.
Owens
,
B. A. M.
, and
Mann
,
B. P.
,
2012
, “
Linear and Nonlinear Electromagnetic Coupling Models in Vibration-Based Energy Harvesting
,”
J. Sound Vib.
,
331
(
4
), pp.
922
937
.
You do not currently have access to this content.