This paper studies the problem of exponentially dissipative control for singular impulsive dynamical systems. Some necessary and sufficient conditions for exponential dissipativity of such systems are established in terms of linear matrix inequalities (LMIs). A state feedback controller is designed to make the closed-loop system exponentially dissipative. A numerical example is given to illustrate the feasibility of the method.

References

1.
Chellaboina
,
V.
, and
Haddad
,
W.
,
2003
, “
Exponentially Dissipative Nonlinear Dynamical Systems: A Nonlinear Extension of Strict Positive Realness
,”
Math. Probl. Eng.
,
2003
(1), pp.
25
45
.
2.
Anderson
,
B.
,
1972
, “
The Small-Gain Theorem, the Passivity Theorem and Their Equivalence
,”
J. Franklin Inst.
,
293
(
2
), pp.
105
115
.
3.
Joshi
,
S.
, and
Gupta
,
S.
,
1996
, “
On a Class of Marginally Stable Positive-Real Systems
,”
IEEE Trans. Autom. Control
,
41
(
1
), pp.
152
155
.
4.
Hill
,
D.
, and
Moylan
,
P.
,
1977
, “
Stability Results for Nonlinear Feedback Systems
,”
Automatica
,
13
(4), pp.
377
382
.
5.
Willems
,
J.
,
1972
, “
Dissipative Dynamical Systems Part I: General Theory
,”
Arch. Ration. Mech. Anal.
,
45
(
5
), pp.
321
351
.
6.
Dai
,
L.
,
1989
,
Singular Control Systems
,
Springer-Verlag
, Berlin/Heidelberg, Germany.
7.
Wang
,
C.
,
1996
, “
State Feedback Impulse Elimination of Linear Time-Varying Singular Systems
,”
Automatica
,
32
(
1
), pp.
133
136
.
8.
Wu
,
Z.
,
Lam
,
J.
,
Su
,
H.
, and
Chu
,
J.
,
2012
, “
Stability and Dissipativity Analysis of Static Neural Networks With Time Delay
,”
IEEE Trans. Neural Networks Learn. Syst.
,
23
(
2
), pp.
199
210
.
9.
Hill
,
D.
, and
Moylan
,
P.
,
1980
, “
Dissipative Dynamical Systems: Basic Input-Output and State Properties
,”
J. Franklin Inst.
,
309
(
5
), pp.
327
357
.
10.
Wang
,
C.
, and
Liao
,
H.
,
2001
, “
Impulse Observability and Impulse Controllability of Linear Time-Varying Singular Systems
,”
Automatica
,
37
(
11
), pp.
1867
1872
.
11.
Haddad
,
W.
,
Chellaboina
,
V.
, and
Kablar
,
N.
,
2001
, “
Nonlinear Impulsive Dynamical Systems. Part I: Stability and Dissipativity
,”
Int. J. Control
,
74
(
17
), pp.
1631
1658
.
12.
Ye
,
H.
,
Michel
,
A.
, and
Hou
,
L.
,
1998
, “
Stability Theory for HybridDynamical Systems
,”
IEEE Trans. Autom. Control
,
43
(
4
), pp.
461
474
.
13.
Shen
,
J.
, and
Jing
,
Z.
,
2006
, “
Stability Analysis for Systems With Impulse Effects
,”
Int. J. Theor. Phys.
,
45
(
9
), pp.
1703
1717
.
14.
Liu
,
B.
,
Liu
,
X.
, and
Liao
,
X.
,
2003
, “
Robust Dissipativity for Uncertain Impulsive Dynamical Systems
,”
Math. Probl. Eng.
,
2003
(3), pp.
119
128
.
15.
Yang
,
L.
,
Liu
,
X.
, and
Zhang
,
Z.
,
2012
, “
Dissipative Control for Singular Impulsive Dynamical Systems
,”
Electron. J. Qual. Theory Differ. Equations
,
2012
(32), pp.
1
11
.
16.
Yang
,
L.
,
Liu
,
X.
, and
Zhang
,
Z.
,
2011
, “
Dissipative Control for Discrete Singular Impulsive Dynamical Systems
,”
Proceedings of the 30th Chinese Control Conference
,
IEEE
, pp.
203
207
.
17.
Boyd
,
S. E.
,
Ghaoui
,
L.
,
Feron
,
E.
, and
Balakrishnan
,
V.
,
1994
,
Linear Matrix Inequalities in System and Control Theory
,
Society for Industrial Mathematics
, Philadelphia, PA.
You do not currently have access to this content.