This paper studies the problem of exponentially dissipative control for singular impulsive dynamical systems. Some necessary and sufficient conditions for exponential dissipativity of such systems are established in terms of linear matrix inequalities (LMIs). A state feedback controller is designed to make the closed-loop system exponentially dissipative. A numerical example is given to illustrate the feasibility of the method.
Issue Section:
Research Papers
References
1.
Chellaboina
, V.
, and Haddad
, W.
, 2003
, “Exponentially Dissipative Nonlinear Dynamical Systems: A Nonlinear Extension of Strict Positive Realness
,” Math. Probl. Eng.
, 2003
(1), pp. 25
–45
.2.
Anderson
, B.
, 1972
, “The Small-Gain Theorem, the Passivity Theorem and Their Equivalence
,” J. Franklin Inst.
, 293
(2
), pp. 105
–115
.3.
Joshi
, S.
, and Gupta
, S.
, 1996
, “On a Class of Marginally Stable Positive-Real Systems
,” IEEE Trans. Autom. Control
, 41
(1
), pp. 152
–155
.4.
Hill
, D.
, and Moylan
, P.
, 1977
, “Stability Results for Nonlinear Feedback Systems
,” Automatica
, 13
(4), pp. 377
–382
.5.
Willems
, J.
, 1972
, “Dissipative Dynamical Systems Part I: General Theory
,” Arch. Ration. Mech. Anal.
, 45
(5
), pp. 321
–351
.6.
Dai
, L.
, 1989
, Singular Control Systems
, Springer-Verlag
, Berlin/Heidelberg, Germany.7.
Wang
, C.
, 1996
, “State Feedback Impulse Elimination of Linear Time-Varying Singular Systems
,” Automatica
, 32
(1
), pp. 133
–136
.8.
Wu
, Z.
, Lam
, J.
, Su
, H.
, and Chu
, J.
, 2012
, “Stability and Dissipativity Analysis of Static Neural Networks With Time Delay
,” IEEE Trans. Neural Networks Learn. Syst.
, 23
(2
), pp. 199
–210
.9.
Hill
, D.
, and Moylan
, P.
, 1980
, “Dissipative Dynamical Systems: Basic Input-Output and State Properties
,” J. Franklin Inst.
, 309
(5
), pp. 327
–357
.10.
Wang
, C.
, and Liao
, H.
, 2001
, “Impulse Observability and Impulse Controllability of Linear Time-Varying Singular Systems
,” Automatica
, 37
(11
), pp. 1867
–1872
.11.
Haddad
, W.
, Chellaboina
, V.
, and Kablar
, N.
, 2001
, “Nonlinear Impulsive Dynamical Systems. Part I: Stability and Dissipativity
,” Int. J. Control
, 74
(17
), pp. 1631
–1658
.12.
Ye
, H.
, Michel
, A.
, and Hou
, L.
, 1998
, “Stability Theory for HybridDynamical Systems
,” IEEE Trans. Autom. Control
, 43
(4
), pp. 461
–474
.13.
Shen
, J.
, and Jing
, Z.
, 2006
, “Stability Analysis for Systems With Impulse Effects
,” Int. J. Theor. Phys.
, 45
(9
), pp. 1703
–1717
.14.
Liu
, B.
, Liu
, X.
, and Liao
, X.
, 2003
, “Robust Dissipativity for Uncertain Impulsive Dynamical Systems
,” Math. Probl. Eng.
, 2003
(3), pp. 119
–128
.15.
Yang
, L.
, Liu
, X.
, and Zhang
, Z.
, 2012
, “Dissipative Control for Singular Impulsive Dynamical Systems
,” Electron. J. Qual. Theory Differ. Equations
, 2012
(32), pp. 1
–11
.16.
Yang
, L.
, Liu
, X.
, and Zhang
, Z.
, 2011
, “Dissipative Control for Discrete Singular Impulsive Dynamical Systems
,” Proceedings of the 30th Chinese Control Conference
, IEEE
, pp. 203
–207
.17.
Boyd
, S. E.
, Ghaoui
, L.
, Feron
, E.
, and Balakrishnan
, V.
, 1994
, Linear Matrix Inequalities in System and Control Theory
, Society for Industrial Mathematics
, Philadelphia, PA.Copyright © 2017 by ASME
You do not currently have access to this content.