This paper examines the shaping of a drug's delivery—in this case, nicotine—to maximize its efficacy. Previous research: (i) furnishes a pharmacokinetic–pharmacodynamic (PKPD) model of this drug's metabolism; (ii) shows that the drug-delivery problem is proper, meaning that its optimal solution is periodic; (iii) shows that the underlying PKPD model is differentially flat; and (iv) exploits differential flatness to solve the problem by optimizing the coefficients of a truncated Fourier expansion of the flat output trajectory. In contrast, the work in this article provides insight into the structure of the theoretical solution to this optimal periodic control (OPC) problem. First, we argue for the existence of a bijection between feasible periodic input and state trajectories of the problem. Second, we exploit Pontryagin's maximum principle to show that the optimal periodic solution has a bang–singular–bang structure. Building on these insights, this article proposes two different numerical methods for solving this OPC problem. One method uses nonlinear programming (NLP) to optimize the states at which the optimal solution transitions between the different solution arcs. The second method approximates the control input trajectory as piecewise constant and optimizes the discrete values of the input sequence. The paper concludes by discussing the computational costs of these two algorithms as well as the importance of the associated insights into the structure of the optimal solution trajectory.

References

1.
Varigonda
,
S.
,
Georgiou
,
T. T.
,
Siegel
,
R. A.
, and
Daoutidis
,
P.
,
2008
, “
Optimal Periodic Control of a Drug Delivery System
,”
Comput. Chem. Eng.
,
32
(
10
), pp.
2256
2262
.
2.
Porchet
,
H. C.
,
Benowitz
,
N. L.
, and
Sheiner
,
L. B.
,
1988
, “
Pharmacodynamic Model of Tolerance: Application to Nicotine
,”
J. Pharmacol. Exp. Ther.
,
244
(
1
), pp.
231
236
.
3.
Bailey
,
J.
, and
Horn
,
F.
,
1971
, “
Comparison Between Two Sufficient Conditions for Improvement of an Optimal Steady-State Process by Periodic Operation
,”
J. Optim. Theory Appl.
,
7
(
5
), pp.
378
384
.
4.
Hudon
,
N.
,
Höffner
,
K.
, and
Guay
,
M.
,
2008
, “
Existence of Optimal Homoclinic Orbits
,” American Control Conference (
ACC
), Seattle, WA, June 11–13, pp.
3829
3833
.
5.
Bittanti
,
S.
,
Fronza
,
G.
, and
Guardabassi
,
G.
,
1973
, “
Periodic Control: A Frequency Domain Approach
,”
IEEE Trans. Autom. Control
,
AC-18
(
1
), pp.
33
38
.
6.
Bernstein
,
D. S.
, and
Gilbert
,
E. G.
,
1980
, “
Optimal Periodic Control: The π Test Revisited
,”
IEEE Trans. Autom. Control
,
25
(
4
), pp.
673
684
.
7.
Colonius
,
F.
,
1988
,
Optimal Periodic Control
,
Springer
,
Berlin/Heidelberg
.
8.
Guay
,
M.
,
Dochain
,
D.
,
Perrier
,
M.
, and
Hudon
,
N.
,
2007
, “
Flatness-Based Extremum-Seeking Control Over Periodic Orbits
,”
IEEE Trans. Autom. Control
,
52
(
10
), pp.
2005
2012
.
9.
Höffner
,
K.
,
Hudon
,
N.
, and
Guay
,
M.
,
2007
, “
On-Line Feedback Control for Optimal Periodic Control Problems
,”
Can. J. Chem. Eng.
,
85
(
4
), pp.
479
489
.
10.
Hudon
,
N.
,
Guay
,
M.
,
Perrier
,
M.
, and
Dochain
,
D.
,
2006
, “
Nonlinear Model Predictive Control for Optimal Discontinuous Drug Delivery
,”
IFAC Proc. Vol.
,
39
(
2
), pp.
527
532
.
11.
Ghanaatpishe
,
M.
,
Kehs
,
M.
, and
Fathy
,
H. K.
,
2015
, “
Development of Online Solution Algorithms for Optimal Periodic Control Problems With Plant Uncertainties
,” American Control Conference
(ACC)
, Chicago, IL, July 1–3, pp.
3576
3582
.
12.
Ghanaatpishe
,
M.
,
Kehs
,
M. A.
, and
Fathy
,
H. K.
, 2017, “
Online Shaping of a Drug's Periodic Administration Trajectory for Efficacy Maximization
,”
IEEE Trans. Control Syst. Technol.
, epub.
13.
Pavlov
,
A. V.
,
Wouw
,
N.
, and
Nijmeijer
,
H.
,
2006
,
Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
14.
De Leenheer
,
P.
, and
Aeyels
,
D.
,
2001
, “
Stabilization of Positive Linear Systems
,”
Syst. Control Lett.
,
44
(
4
), pp.
259
271
.
15.
Angeli
,
D.
, and
Sontag
,
E. D.
,
2003
, “
Monotone Control Systems
,”
IEEE Trans. Autom. Control
,
48
(
10
), pp.
1684
1698
.
16.
Speyer
,
J.
, and
Evans
,
R.
,
1984
, “
A Second Variational Theory for Optimal Periodic Processes
,”
IEEE Trans. Autom. Control
,
29
(
2
), pp.
138
148
.
17.
Robbins
,
H.
,
1967
, “
A Generalized Legendre–Clebsch Condition for the Singular Cases of Optimal Control
,”
IBM J. Res. Dev.
,
11
(
4
), pp.
361
372
.
18.
Powers
,
W.
,
1980
, “
On the Order of Singular Optimal Control Problems
,”
J. Optim. Theory Appl.
,
32
(
4
), pp.
479
489
.
19.
Kopp
,
R. E.
, and
MoYER
,
H. G.
,
1965
, “
Necessary Conditions for Singular Extremals
,”
AIAA J.
,
3
(
8
), pp.
1439
1444
.
20.
Kelley
,
H. J.
,
1964
, “
A Second Variation Test for Singular Extremals
,”
AIAA J.
,
2
(
8
), pp.
1380
1382
.
21.
Bliss
,
G. A.
,
1946
,
Lectures on the Calculus of Variations
,
Chicago University Press
,
Chicago, IL
.
22.
Kamien
,
M. I.
, and
Schwartz
,
N. L.
,
2012
,
Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management
,
Courier
,
North Chelmsford, MA
.
23.
Hull
,
D. G.
,
2013
,
Optimal Control Theory for Applications
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
24.
Sussmann
,
H. J.
, and
Willems
,
J. C.
,
1997
, “
300 Years of Optimal Control: From the Brachystochrone to the Maximum Principle
,”
IEEE Control Syst.
,
17
(
3
), pp.
32
44
.
25.
Fradkov
,
A. L.
, and
Pogromsky
,
A. Y.
,
1996
, “
Speed Gradient Control of Chaotic Continuous-Time Systems
,”
IEEE Trans. Circuits Syst. I Fundam. Theory Appl.
,
43
(
11
), pp.
907
913
.
26.
Stan
,
G.-B.
, and
Sepulchre
,
R.
,
2007
, “
Analysis of Interconnected Oscillators By Dissipativity Theory
,”
IEEE Trans. Autom. Control
,
52
(
2
), pp.
256
270
.
You do not currently have access to this content.