This paper is concerned with the low-complexity passive suspension design problem, aiming at improving vehicle performance in the meanwhile maintaining simplicity in structure for passive suspensions. Two methods are employed to construct the low-complexity passive suspensions. Using the first method, the number of each element is restricted to one, and the performance for all networks with one inerter, one damper, and one spring is evaluated, where best configurations for different vehicle settings are identified. Using the second method, low-order admittance networks whose orders of admittance functions are no larger than three are utilized. Design methods are proposed by directly using the positive realness conditions imposed on the admittance functions. The effectiveness of the proposed methods is numerically demonstrated, and the comparison between these two constructing methods is conducted.

References

1.
Savaresi
,
S. M.
,
Poussot-Vassal
,
C.
,
Spelta
,
C.
,
Sename
,
O.
, and
Dugard
,
L.
,
2010
,
Semi-Active Suspension Control Design for Vehicles
,
Elsevier
,
Amsterdam, The Netherlands
.
2.
Poussot-Vassal
,
C.
,
Spelta
,
C.
,
Sename
,
O.
,
Savaresi
,
S. M.
, and
Dugard
,
L.
,
2012
, “
Survey and Performance Evaluation on Some Automotive Semi-Active Suspension Control Methods: A Comparative Study on a Single-Corner Model
,”
Annu. Rev. Control
,
36
(
1
), pp.
148
160
.
3.
Smith
,
M. C.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE Trans. Autom. Control
,
47
(
10
), pp.
1648
1662
.
4.
El Majdoub
,
K.
,
Ghani
,
D.
,
Giri
,
F.
, and
Chaoui
,
F. Z.
,
2014
, “
Adaptive Semi-Active Suspension of Quarter-Vehicle With Magnetorheological Damper
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
2
), p.
021010
.
5.
Liu
,
Y.
, and
Zuo
,
L.
,
2016
, “
Mixed Skyhook and Power-Driven-Damper: A New Low-Jerk Semi-Active Suspension Control Based on Power Flow Analysis
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
8
), p.
081009
.
6.
Fei
,
J.
, and
Xin
,
M.
,
2012
, “
Robust Adaptive Sliding Mode Controller for Semi-Active Vehicle Suspension System
,”
Int. J. Innovative Comput., Inf. Control
,
8
(
1
), pp.
691
700
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.4514&rep=rep1&type=pdf
7.
Du
,
H.
,
Li
,
W.
, and
Zhang
,
N.
,
2011
, “
Semi-Active Variable Stiffness Vibration Control of Vehicle Seat Suspension Using an MR Elastomer Isolator
,”
Smart Mater. Struct.
,
20
(
10
), p.
105003
.
8.
Chen
,
M. Z. Q.
,
Hu
,
Y.
,
Li
,
C.
, and
Chen
,
G.
,
2014
, “
Semi-Active Suspension With Semi-Active Inerter and Semi-Active Damper
,”
19th World Congress of the International Federation of Automatic Control
, Cape Town, South Africa, Aug. 24–29, pp.
11225
11230
.https://pdfs.semanticscholar.org/154b/a270fe37788f62728366201fef5d802b8a54.pdf
9.
Hu
,
Y.
,
Chen
,
M. Z. Q.
,
Xu
,
S.
, and
Liu
,
Y.
,
2017
, “
Semi-Active Inerter and Its Application in Adaptive Tuned Vibration Absorbers
,”
IEEE Trans. Control Syst. Technol.
,
25
(
1
), pp.
294
300
.
10.
Sakthivel
,
R.
,
Arunkumar
,
A.
,
Mathiyalagan
,
K.
, and
Selvi
,
S.
,
2014
, “
Robust Reliable Control for Uncertain Vehicle Suspension Systems With Input Delays
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
4
), p.
041013
.
11.
Mozaffari
,
A.
,
Doosthoseini
,
A.
, and
Azad
,
N. L.
,
2016
, “
Predictive Control of Suspension Systems Through Combining Dynamic Matrix and Constrained Variable Structure Controllers
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
12
), p.
121007
.
12.
Li
,
P.
,
Lam
,
J.
, and
Cheung
,
K. C.
,
2014
, “
Multi-Objective Control for Active Vehicle Suspension With Wheelbase Preview
,”
J. Sound Vib.
,
333
(
21
), pp.
5269
5282
.
13.
Hu
,
Y.
,
Chen
,
M. Z. Q.
, and
Hou
,
Z.
,
2015
, “
Multiplexed Model Predictive Control for Active Vehicle Suspensions
,”
Int. J. Control
,
88
(
2
), pp.
347
363
.
14.
Sun
,
W.
,
Gao
,
H.
, and
Kaynak
,
O.
,
2015
, “
Vibration Isolation for Active Suspensions With Performance Constraints and Actuator Saturation
,”
IEEE/ASME Trans. Mechatronics
,
20
(
2
), pp.
675
683
.
15.
Cao
,
D.
,
Song
,
X.
, and
Ahmadian
,
M.
,
2011
, “
Editors' Perspectives: Road Vehicle Suspension Design, Dynamics, and Control
,”
Veh. Syst. Dyn.
,
49
(
1–2
), pp.
3
28
.
16.
Smith
,
M. C.
, and
Wang
,
F.-C.
,
2004
, “
Performance Benefits in Passive Vehicle Suspensions Employing Inerters
,”
Veh. Syst. Dyn.
,
42
(
4
), pp.
235
257
.
17.
Scheibe
,
F.
, and
Smith
,
M. C.
,
2009
, “
Analytical Solutions for Optimal Ride Comfort and Tyre Grip for Passive Vehicle Suspensions
,”
Veh. Syst. Dyn
,
47
(
10
), pp.
1229
1252
.
18.
Hu
,
Y.
,
Chen
,
M. Z. Q.
, and
Shu
,
Z.
,
2014
, “
Passive Vehicle Suspensions Employing Inerters With Multiple Performance Requirements
,”
J. Sound Vib.
,
333
(
8
), pp.
2212
2225
.
19.
Papageorgiou
,
C.
, and
Smith
,
M. C.
,
2006
, “
Positive Real Synthesis Using Matrix Inequalities for Mechanical Networks: Application to Vehicle Suspension
,”
IEEE Trans. Control Syst. Technol.
,
14
(
3
), pp.
423
435
.
20.
Wang
,
F.-C.
, and
Chan
,
H.-A.
,
2011
, “
Vehicle Suspensions With a Mechatronic Network Strut
,”
Veh. Syst. Dyn.
,
49
(
5
), pp.
811
830
.
21.
Wang
,
F.-C.
, and
Su
,
W.-J.
,
2008
, “
Impact of Inerter Nonlinearities on Vehicle Suspension Control
,”
Veh. Syst. Dyn.
,
46
(
7
), pp.
575
595
.
22.
Chen
,
M. Z. Q.
,
Hu
,
Y.
,
Huang
,
L.
, and
Chen
,
G.
,
2014
, “
Influence of Inerter on Natural Frequencies of Vibration Systems
,”
J. Sound Vib.
,
333
(
7
), pp.
1874
1887
.
23.
Guo
,
S.
,
Liu
,
Y.
,
Xu
,
L.
,
Guo
,
X.
, and
Zuo
,
L.
,
2016
, “
Performance Evaluation and Parameter Sensitivity of Energy-Harvesting Shock Absorbers on Different Vehicles
,”
Veh. Syst. Dyn.
,
54
(
7
), pp.
918
942
.
24.
Wang
,
F.-C.
,
Liao
,
M. K.
,
Liao
,
B. H.
, and
Su
,
W. J.
,
2009
, “
The Performance Improvements of Train Suspension Systems With Mechanical Networks Employing Inerters
,”
Veh. Syst. Dyn.
,
47
(
7
), pp.
805
830
.
25.
Wang
,
F.-C.
,
Hong
,
M. F.
, and
Chen
,
C. W.
,
2010
, “
Building Suspensions With Inerters
,”
Proc. IMechE, Part C: J. Mech. Eng. Sci.
,
224
(
8
), pp.
1605
1616
.
26.
Chen
,
M. Z. Q.
,
Wang
,
K.
,
Li
,
C.
, and
Chen
,
G.
,
2017
, “
Realization of Biquadratic Impedances as Five-Element Bridge Networks
,”
IEEE Trans. Circuits Syst. I: Regular Papers
,
64
(
6
), pp.
1599
1611
.
27.
Chen
,
M. Z. Q.
,
Wang
,
K.
,
Zou
,
Y.
, and
Lam
,
J.
,
2013
, “
Realization of a Special Class of Admittances With One Damper and One Inerter for Mechanical Control
,”
IEEE Trans. Autom. Control
,
58
(
7
), pp.
1841
1846
.
28.
Wang
,
K.
,
Chen
,
M. Z. Q.
, and
Hu
,
Y.
,
2014
, “
Synthesis of Biquadratic Impedances With at Most Four Passive Elements
,”
J. Franklin Inst.
,
351
(
3
), pp.
1251
1267
.
29.
Lazar
,
I. F.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2014
, “
Using an Inerter-Based Device for Structural Vibration Suppression
,”
Earthquake Eng. Struct. Dyn.
,
43
(
8
), pp.
1129
1147
.
30.
Hu
,
Y.
,
Chen
,
M. Z. Q.
,
Shu
,
Z.
, and
Huang
,
L.
,
2015
, “
Analysis and Optimization for Inerter-Based Isolators Via Fixed-Point Theory and Algebraic Solution
,”
J. Sound Vib.
,
346
, pp.
17
36
.
31.
Brzeski
,
P.
,
Pavlovskaia
,
E.
,
Kapitaniak
,
T.
, and
Perlikowski
,
P.
,
2015
, “
The Application of Inerter in Tuned Mass Absorber
,”
Int. J. Non-Linear Mech.
,
70
, pp.
20
29
.
32.
Jin
,
X. L.
,
Chen
,
M. Z. Q.
, and
Huang
,
Z. L.
,
2016
, “
Minimization of the Beam Response Using Inerter-Based Passive Vibration Control Configurations
,”
Int. J. Mech. Sci.
,
119
, pp.
80
87
.
33.
Yamamoto
,
K.
, and
Smith
,
M. C.
,
2016
, “
Bounded Disturbance Amplification for Mass Chains With Passive Interconnection
,”
IEEE Trans. Autom. Control
,
61
(
6
), pp.
1565
1574
.
34.
Hu
,
Y.
, and
Chen
,
M. Z. Q.
,
2015
, “
Performance Evaluation for Inerter-Based Dynamic Vibration Absorbers
,”
Int. J. Mech. Sci.
,
99
, pp.
297
307
.
35.
Li
,
P.
,
Lam
,
J.
, and
Cheung
,
K. C.
,
2015
, “
Control of Vehicle Suspension Using an Adaptive Inerter
,”
Proc. Inst. Mech. Eng., Part D: J. Autom. Eng.
,
229
(
14
), pp.
1934
1943
.
36.
Shen
,
Y.
,
Chen
,
L.
,
Yang
,
X.
,
Shi
,
D.
, and
Yang
,
J.
,
2016
, “
Improved Design of Dynamic Vibration Absorber by Using the Inerter and Its Application in Vehicle Suspension
,”
J. Sound Vib.
,
361
, pp.
148
158
.
37.
Zhang
,
S. Y.
,
Jiang
,
J. Z.
, and
Neild
,
S. A.
,
2017
, “
Passive Vibration Control: A Structure-Immittance Approach
,”
Proc. R. Soc. A
,
473
(
2201
), p.
20170011
.
38.
Newcomb
,
R. W.
,
1966
,
Linear Multiport Synthesis
,
McGrawHill
,
New York
.
39.
Chen
,
M. Z. Q.
, and
Smith
,
M. C.
,
2009
, “
A Note on Tests for Positive-Real Functions
,”
IEEE Trans. Automat. Control
,
54
(
2
), pp.
390
393
.
40.
Anderson
,
B. D. O.
, and
Vongpanitlerd
,
S.
,
1973
,
Network Analysis and Synthesis: A Modern Systems Approach
,
Prentice Hall
, Upper Saddle River, NJ.
41.
Van Valkenburg
,
M. E.
,
1965
,
Introduction to Modern Network Synthesis
,
Wiley
,
New York
.
42.
Bott
,
R.
, and
Duffin
,
R. J.
,
1949
, “
Impedance Synthesis Without Use of Transformers
,”
J. Appl. Phys.
,
20
(
8
), p.
816
.
You do not currently have access to this content.