In this study, a control system was designed to control the robot's movement (The Mitsubishi RM-501 robot manipulator) based on the quantum neural network (QNN). A proposed method was used to solve the inverse kinematics in order to determine the angles values for the arm's joints when it follows through any path. The suggested method is the QNN algorithm. The forward kinematics was derived according to Devavit–Hartenberg representation. The dynamics model for the arm was modeled based on Lagrange method. The dynamic model is considered to be a very important step in the world of robots. In this study, two methods were used to improve the system response. In the first method, the dynamic model was used with the traditional proportional–integral–derivative (PID) controller to find its parameters (Kp, Ki, Kd) by using Ziegler Nichols method. In the second method, the PID parameters were selected depending on QNN without the need to a mathematical model of the robot manipulator. The results show a better response to the system when replacing the traditional PID controller with the suggested controller.

References

1.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2005
,
Robot Modeling and Control
, 1st ed.,
Wiley
, New York.
2.
Romdhane
,
L.
, and
Duffy
,
J.
,
1991
, “
Optimum Grasp for Multi-Fingered Hands With Point Contact With Friction Using the Modified Singular Value Decomposition
,”
IEEE International Conference on Advanced Robotics
(
ICAR
), Pisa, Italy, June 19–22, pp.
1614
1617
.
3.
Ishiia
,
C.
, and
Futatsugia
,
T.
,
2013
, “
Design and Control of a Robotic Forceps Manipulator With Screw-Drive Bending Mechanism and Extension of Its Motion Space
,”
Conference on Biomanufacturing
, Tokyo, Japan, Mar. 3–5, pp.
104
109
.
4.
Denavit
,
J.
, and
Hartenberg
,
R. S.
, 1955, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
, pp.
215
221
.https://www.scribd.com/document/177131768/a-kinematic-notation-for-lower-pair-mechanisms-based-on-matrices-denavit-hartenberg-pdf
5.
Iliukin
,
V. N.
,
Mitkovskii
,
K. B.
,
Bizyanova
,
D. A.
, and
Akopyan
,
A. A.
,
2017
, “
The Modeling of Inverse Kinematics for 5 DOF Manipulator
,” Dynamics and Vibroacoustics of Machines (
DVM 2016
), Samara, Russia, June 29–July 1, pp.
498
505
.
6.
Xia
,
Y.
, and
Wang
,
J.
,
2001
, “
A Dual Neural Network for Kinematic Control of Redundant Robot Manipulators
,”
IEEE Trans. Syst. Man Cybern., Part B
,
31
(
1
), pp.
147
154
.
7.
Kucuk
,
S.
, and
Bingul
,
Z.
,
2004
, “
The Inverse Kinematics Solutions of Industrial Robot Manipulators
,” IEEE International Conference on Mechatronics (
ICM
), Istanbul, Turkey, June 3–5, pp.
274
279
.
8.
Manocha
,
D.
, and
Canny
,
J. F.
,
1994
, “
Efficient Inverse Kinematics for General 6R Manipulators
,”
IEEE Trans. Rob. Autom.
,
10
(
5
), pp.
648
657
.
9.
Xu
,
D.
,
Acosta Calderon
,
C. A.
,
Gan
,
J. Q.
, and
Hu
,
H.
,
2005
, “
An Analysis of the Inverse Kinematics for a 5-DOF Manipulator
,”
Int. J. Autom. Comput.
,
2
(
2
), pp.
114
124
.
10.
Sadjadian
,
H.
,
Taghirad
,
H. D.
, and
Fatehi
,
A.
,
2005
, “
Neural Networks Approaches for Computing the Forward Kinematics of a Redundant Parallel Manipulator
,”
Int. J. Comput. Intell.
,
2
(
1
), pp.
40
47
.
11.
Abu Qassem
,
M.
,
Abuhadrous
,
I.
, and
Elaydi
,
H.
,
2010
, “
Modeling and Simulation of 5 DOF Educational Robot Arm
,” IEEE International Conference on Advanced Computer Control (
ICACC
), Shenyang, China, Mar. 27–29, pp.
569
574
.
12.
Meng
,
Z.
,
Liang
,
X.
,
Andersen
,
H.
, and
Ang
,
M. H.
,
2016
, “
Modeling and Control of a 2-Link Mobile Manipulator With Virtual Prototyping
,” International Conference on Ubiquitous Robots and Ambient Intelligence (
URAI
), Xi'an, China, Aug. 19–22, pp.
363
368
.
13.
Linsker
,
R.
,
2008
, “
Neural Network Learning of Optimal Kalman Prediction and Control
,”
Neural Networks
,
21
(
9
), pp.
1328
1343
.
14.
Li
,
S.
,
Wang
,
H.
, and
Rafique
,
M. U.
,
2017
, “
A Novel Recurrent Neural Network for Manipulator Control With Improved Noise Tolerance
,”
IEEE Trans. Neural Networks Learn. Systems
,
PP
(
99
), pp.
1
11
.
15.
Jin
,
L.
,
Li
,
S.
,
La
,
H. M.
, and
Lou
,
X.
,
2017
, “
Manipulability Optimization of Redundant Manipulators Using Dynamic Neural Networks
,”
IEEE Tran. Ind. Electron.
,
64
(
6
), pp.
4710
4720
.
16.
Li
,
S.
,
Zhang
,
Y.
, and
Jin
,
L.
,
2017
, “
Kinematic Control of Redundant Manipulators Using Neural Networks
,”
IEEE Trans. Neural Networks Learn. Syst.
,
28
(
10
), pp.
2243
2254
.
17.
Li
,
S.
,
He
,
J.
,
Li
,
Y.
, and
Rafique
,
M. U.
,
2017
, “
Distributed Recurrent Neural Networks for Cooperative Control of Manipulators: A Game-Theoretic Perspective
,”
IEEE Trans. Neural Networks Learn. Syst.
,
28
(
2
), pp.
415
426
.
18.
Jin
,
L.
,
Zhang
,
Y.
,
Li
,
S.
, and
Zhang
,
Y.
,
2016
, “
Modified ZNN for Time-Varying Quadratic Programming With Inherent Tolerance to Noises and Its Application to Kinematic Redundancy Resolution of Robot Manipulators
,”
IEEE Tran. Ind. Electron.
,
63
(
11
), pp.
6978
6988
.
19.
Jin
,
L.
,
Zhang
,
Y.
, and
Li
,
S.
,
2016
, “
Integration-Enhanced Neural Network for Real-Time-Varying Matrix Inversion in the Presence of Various Kinds of Noises
,”
IEEE Trans. Neural Networks Learn. Syst.
,
27
(
12
), pp.
2615
2627
.
20.
Xiao
,
L.
,
Bingjie
,
G.
, and
Lei
,
W.
,
2007
, “
Motion Control of Mini Underwater Robots Based on Sigmoid Fuzzy Neural Network
,”
IEEE
International Conference on Automation and Logistics, Jinan, China, Aug. 18–21, pp. 918–922.
21.
Purushothaman
,
G.
, and
Karayiannis
,
N. B.
,
1997
, “
Quantum Neural Networks (QNN's): Inherently Fuzzy Feed Forward Neural Networks
,”
IEEE Int. Conf. Neural Networks
,
8
(
3
), pp. 679–693.
22.
Kucuk
,
S.
, and
Bingul
,
Z.
,
2014
, “
Inverse Kinematics Solutions for Industrial Robot Manipulators With Offset Wrists
,”
Appl. Math. Model.
,
38
(
7–8
), pp.
1983
1999
.
23.
Bingul
,
Z.
,
Ertunc
,
H. M.
, and
Oysu
,
C.
,
2005
, “
Comparison of Inverse Kinematics Solutions Using Neural Network for 6R Robot Manipulator With Offset
,”
ICSC Congress on Computational Intelligence Methods and Applications
, Istanbul, Turkey, Dec. 15–17, pp.
1
5
.
24.
Crenganis
,
M.
,
Breaz
,
R.
,
Racz
,
G.
, and
Bologa
,
O.
,
2012
, “
Inverse Kinematics of a 7 DOF Manipulator Using Adaptive Neuro-Fuzzy Inference Systems
,” IEEE International Conference on Control Automation Robotics and Vision (
ICARCV
), Guangzhou, China, Dec. 5–7, pp.
1232
1237
.
25.
Hendarto
,
H. A.
,
Munadi
, and
Setiawan
,
J. D.
,
2014
, “
ANFIS Application for Calculating Inverse Kinematics of Programmable Universal Machine for Assemble (PUMA) Robot
,” First International Conference on Information Technology, Computer and Electrical Engineering (
ICITACEE
), Semarang, Indonesia, Nov. 8–9, pp. 35–40.
26.
Bingul
,
Z.
, and
Karahan
,
O.
,
2011
, “
A Fuzzy Logic Controller Tuned With PSO for 2 DOF Robot Trajectory Control
,”
Expert Syst. Appl.
,
38
(
1
), pp.
1017
1031
.
27.
He
,
J.
,
Luo
,
M.
,
Zhang
,
Q.
,
Zhao
,
J.
, and
Xu
,
L.
,
2016
, “
Adaptive Fuzzy Sliding Mode Controller With Nonlinear Observer for Redundant Manipulators Handling Varying External Force
,”
J. Bionic Eng.
,
13
(
4
), pp.
600
611
.
28.
SharmaGaur
,
R. P.
, and
Mittal
,
A. P.
,
2016
, “
Design of Two-Layered Fractional Order Fuzzy Logic Controllers Applied to Robotic Manipulator With Variable Payload
,”
Appl. Soft Comput.
,
47
, pp.
565
576
.
29.
Vijay
,
M.
, and
Jena
,
D.
,
2017
, “
PSO Based Neuro Fuzzy Sliding Mode Control for a Robot Manipulator
,”
J. Electr. Syst. Inf. Technol.
,
4
(
1
), pp.
243
256
.
30.
Sharma
,
R.
,
Kumar
,
V.
,
Gaur
,
P.
, and
Mittal
,
A. P.
,
2016
, “
An Adaptive PID Like Controller Using Mix Locally Recurrent Neural Network for Robotic Manipulator With Variable Payload
,”
ISA Trans.
,
62
, pp.
258
267
.
31.
Chaudhary
,
H.
,
Panwar
,
V.
,
Sukavanum
,
N.
, and
Prasad
,
R.
,
2014
, “
Fuzzy PD+I Based Hybrid Force/Position Control of an Industrial Robot Manipulator
,”
IFAC Proc.
,
47
(
1
), pp.
429
436
.
You do not currently have access to this content.