The lateral excessive sway motion caused by pedestrian traffic has attracted great public attention in the past decades years. However, the theories about exploring the effect of pedestrian on the lateral dynamic properties of structure are scarce. The new contribution of this paper is that a new pedestrian-structure system is proposed for exploring the effect of human on structural dynamic properties based on a sway assumption. Study shows that pedestrian deteriorates the natural frequency of structure and improves structural damping. The influence tendencies of pedestrian on structure can be supported by measurements. The further parametric study shows that the changes of human dynamic parameters have some evident impacts on structural dynamic performances. For example, the increase of leg damping can trigger an improvement of structural damping capacity. In addition, the walking step frequency closing structural harmonic natural frequency can incur the worst response. The increase of step width deteriorates lateral vibration and structural frequency but can slightly improve structural damping. One of essential reasons influencing structural lateral dynamic properties is the dynamic human system including body mass, damping, stiffness, and its motion behavior such as step frequency. This theory is proposed to analyze how pedestrian alters the lateral dynamic performances on those sensitive structures such as the footbridges or stadium bleachers. For example, how the variation of step width influences the change of natural frequency of structure?

References

1.
Newland
,
D. E.
,
2003
, “
Vibration of the London Millennium Bridge: Cause and Cure
,”
Int. J. Acoust. Vib.
,
8
(
1
), pp.
9
14
.
2.
Nakamura
,
S. I.
, and
Kawasaki
,
T.
,
2006
, “
Lateral Vibration of Footbridges by Synchronous Walking
,”
J. Constr. Steel Res.
,
62
(11), pp.
1148
1160
.
3.
Brownjohn
,
J. M. W.
, and
Pavic
,
A.
,
2007
, “
Experimental Methods for Estimating Modal Mass in Footbridges Using Human-Induced Dynamic Excitation
,”
Eng. Struct.
,
29
(11), pp.
2833
2843
.
4.
Ricciardelli
,
F.
, and
Pizzimenti
,
A.,D.
,
2007
, “
Lateral Walking–Induced Forces on Footbridges
,”
J. Bridge Eng.
,
12
(
6
), pp.
677
688
.
5.
Zivanovic
,
S.
,
Pavic
,
A.
, and
Reynolds
,
P.
,
2005
, “
Vibration Serviceability of Footbridges Under Human-Induced Excitation: A Literature Review
,”
J. Sound Vib.
,
279
(1–2), pp.
1
74
.
6.
Carroll
,
S. P.
,
Owen
,
J. S.
, and
Hussein
,
M. F. M.
,
2012
, “
Modeling Crowd–Bridge Dynamic Interaction With a Discretely Defined Crowd
,”
J. Sound Vib.
,
331
(11), pp.
2685
2709
.
7.
Brownjohn
,
J. M. W.
,
1999
, “
Energy Dissipation in One-Way Slabs With Human Participation
,”
Asia–Pacific Vibration Conference
, Singapore, Dec. 13–15, pp.
155
60
.https://www.researchgate.net/profile/James_Brownjohn/publication/2470416_Energy_Dissipation_In_One-Way_Slabs_With_Human_Participation/links/0deec53c946da29b73000000/Energy-Dissipation-In-One-Way-Slabs-With-Human-Participation.pdf
8.
Ellis
,
B. R.
,
Ji
,
T.
, and
Littler
,
J. D.
,
2000
, “
The Response of Grandstands to Dynamic Crowd Loads
,”
Proc. Inst. Civil Eng. Struct. Build.
,
140
(4), pp.
355
365
.
9.
Shahabpoor
,
E.
,
Pavic
,
A.
,
Racic
,
V.
, and
Zivanovic
,
S.
,
2017
, “
Effect of Group Walking Traffic on Dynamic Properties of Pedestrian Structures
,”
J. Sound Vib.
,
387
, pp.
207
225
.
10.
Hong
,
H.
,
Kim
,
S.
,
Kim
,
C.
,
Lee
,
S.
, and
Park
,
S.
,
2013
, “
Spring-Like Gait Mechanics Observed During Walking in Both Young and Older Adults
,”
J. Biomech.
,
46
(1), pp.
77
82
.
11.
Bocian
,
M.
,
Macdonald
,
J. H. G.
, and
Burn
,
J. F.
,
2012
, “
Biomechanically Inspired Modeling of Pedestrian-Induced Forces on Laterally Oscillating Structures
,”
J. Sound Vib.
,
331
(16), pp.
3914
3929
.
12.
Carroll
,
S. P.
,
Owen
,
J. S.
, and
Hussein
,
M. F. M.
,
2013
, “
A Coupled Biomechanical/Discrete Element Crowd Model of Crowd–Bridge Dynamic Interaction and Application to the Clifton Suspension Bridge
,”
Eng. Struct.
,
49
, pp.
58
75
.
13.
Macdonald
,
J. H. G.
,
2009
, “
Lateral Excitation of Bridges by Balancing Pedestrians
,”
Proc. R. Soc. A
,
465
(2104), pp.
1055
1073
.
14.
Qin
,
J. W.
,
Law
,
S. S.
,
Yang
,
Q. S.
, and
Yang
,
N.
,
2013
, “
Pedestrian–Bridge Dynamic Interaction: Including Human Participation
,”
J. Sound Vib.
,
332
(4), pp.
1107
1124
.
15.
Qin
,
J. W.
,
Law
,
S. S.
,
Yang
,
Q. S.
, and
Yang
,
N.
,
2014
, “
Finite Element Analysis of Pedestrian–Bridge Dynamic Interaction
,”
ASME J. Appl. Mech.
,
81
(4), p. 041001.
16.
Yang
,
Q. S.
,
Qin
,
J. W.
, and
Law
,
S. S.
,
2015
, “
A Three-Dimensional Human Walking Model
,”
J. Sound Vib.
,
357
, pp.
437
456
.
17.
Gao
,
Y. A.
,
Yang
,
Q. S.
, and
Qin
,
J. W.
,
2017
, “
Bipedal Crowd–Structure Interaction Including Social Force Effect
,”
Int. J. Struct. Stab. Dyn.
,
17
(
7
), p.
1750079
.
18.
Gao
,
Y. A.
, and
Yang
,
Q. S.
,
2018
, “
A Theoretical Treatment of Crowd–Structure Interaction
,”
Int. J. Struct. Stab. Dyn.
,
18
(
1
), p.
1871001
.
19.
Liu
,
J.
, and
Urbann
,
O.
,
2016
, “
Bipedal Walking With Dynamic Balance That Involves Three–Dimensional Upper Body Motion
,”
Rob. Auton. Syst.
,
77
, pp.
39
54
.
20.
Juang
,
J. N.
,
1995
,
Applied System Identification
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
1051
1052
.
21.
Donelan
,
J. M.
,
Kram
,
R.
, and
Kuo
,
A. D.
,
2001
, “
Mechanical and Metabolic Determinants of the Preferred Step Width in Human Walking
,”
Proc. R. Soc. Biol. Sci.
,
268
(1480), pp.
1985
1992
.
22.
Hof
,
A. L.
,
Vermerris
,
S. M.
, and
Gjaltema
,
W. A.
,
2010
, “
Balance Responses to Lateral Perturbations in Human Treadmill Walking
,”
J. Exp. Biol.
,
213
, pp.
2655
2664
.
23.
Riener
,
R.
,
Rabuffetti
,
M.
, and
Frigo
,
C.
,
2002
, “
Stair Ascent and Descent at Different Inclinations
,”
Gait Posture
,
15
(1), pp.
32
44
.
24.
Rebula
,
J. R.
, and
Kuo
,
A. D.
,
2015
, “
The Cost of Leg Forces in Bipedal locomotion: A Simple Optimization Study
,”
PLoS One
,
10
(
2
), p.
e0117384
.
You do not currently have access to this content.