Condition monitoring and fault diagnostics in rotorcraft have significant effect on improving safety level and reducing operational and maintenance costs. In this paper, a new method is proposed for fault detection and diagnoses of AH-64D (Apache helicopter) tail rotor drive-shaft problems. The proposed method depends on decomposing signal into different frequency ranges using mother wavelet. The most informative part of the vibration signal is then determined by calculating Shannon entropy of each part. Bispectrum is calculated for this part to investigate quadratic nonlinearities in this segment. Then, search algorithm is used to extract minimum number of indicative features from the bispectrum, which are then fed to classification algorithms. In order to quantitatively evaluate the proposed method, six classification algorithms are compared against each other such as fine K-nearest neighbor (KNN), cubic KNN, quadratic discriminant analysis, linear support vector machine (SVM), Gaussian SVM, and neural network. Comparison criteria include accuracy, precision, sensitivity, F score, true alarm, recall, and error classification accuracy (ECA). The proposed method is verified using real-world vibration data collected from a dedicated AH-64D helicopter tail rotor drive train (TRDT) research test bed. The proposed algorithm proves its ability in finding minimum number of indicative features and classifying the shaft faults with superior performance.

References

1.
Bayoumi
,
A.
,
Ranson
,
W.
,
Eisner
,
L.
, and
Grant
,
L. E.
,
2005
, “
Cost and Effectiveness Analysis of the AH-64 and UH-60 On-Board Vibrations Monitoring System
,”
IEEE Aerospace Conference
(
AERO
), Big Sky, MT, Mar. 5–12, pp.
3921
3940
.
2.
Hassan
,
M. A.
,
Bayoumi
,
A.-M. E.
, and
Shin
,
Y.-J.
,
2014
, “
Quadratic-Nonlinearity Index Based on Bicoherence and Its Application in Condition Monitoring of Drive-Train Components
,”
IEEE Trans. Instrum. Meas.
,
63
(
3
), pp.
719
728
.
3.
Heng
,
A.
,
Zhang
,
S.
,
Tan
,
A. C.
, and
Mathew
,
J.
,
2009
, “
Rotating Machinery Prognostics: State of the Art, Challenges and Opportunities
,”
Mech. Syst. Signal Process.
,
23
(
3
), pp.
724
739
.
4.
Jardine
,
A. K.
,
Lin
,
D.
, and
Banjevic
,
D.
,
2006
, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
,
20
(
7
), pp.
1483
1510
.
5.
Sun
,
W.
,
Yang
,
G. A.
,
Chen
,
Q.
,
Palazoglu
,
A.
, and
Feng
,
K.
,
2013
, “
Fault Diagnosis of Rolling Bearing Based on Wavelet Transform and Envelope Spectrum Correlation
,”
J. Vib. Control
,
19
(
6
), pp.
924
941
.
6.
Gryllias
,
K. C.
, and
Antoniadis
,
I. A.
,
2012
, “
A Support Vector Machine Approach Based on Physical Model Training for Rolling Element Bearing Fault Detection in Industrial Environments
,”
Eng. Appl. Artif. Intell.
,
25
(
2
), pp.
326
344
.
7.
Lau
,
E. C. C.
, and
Ngan
,
H. W.
,
2010
, “
Detection of Motor Bearing Outer Raceway Defect by Wavelet Packet Transformed Motor Current Signature Analysis
,”
IEEE Trans. Instrum. Meas.
,
59
(
10
), pp.
2683
2690
.
8.
Unal
,
M.
,
Sahin
,
Y.
,
Onat
,
M.
,
Demetgul
,
M.
, and
Kucuk
,
H.
,
2016
, “
Fault Diagnosis of Rolling Bearings Using Data Mining Techniques and Boosting
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
2
), p.
021003
.
9.
Pandya
,
D.
,
Upadhyay
,
S.
, and
Harsha
,
S.
,
2013
, “
Fault Diagnosis of Rolling Element Bearing With Intrinsic Mode Function of Acoustic Emission Data Using APF-KNN
,”
Expert Syst. Appl.
,
40
(
10
), pp.
4137
4145
.
10.
Prieto
,
M. D.
,
Cirrincione
,
G.
,
Espinosa
,
A. G.
,
Ortega
,
J.
, and
Henao
,
H.
,
2013
, “
Bearing Faults Detection by a Novel Condition Monitoring Scheme Based on Statistical-Time Features and Neural Networks
,”
IEEE Trans. Ind. Electron.
,
60
(
8
), pp.
3398
3407
.
11.
Nicolau
,
V.
, and
Andrei
,
M.
,
2016
, “
On Spectral Component Estimation Using Neural Networks for Rolling Bearing Fault Diagnosis
,”
IEEE 22nd International Symposium for Design and Technology in Electronic Packaging
(
SIITME
), Oradea, Romania, Oct. 20–23, pp. 290–293.
12.
Cabal-Yepez
,
E.
,
Garcia-Ramirez
,
A. G.
,
Romero-Troncoso
,
R. J.
,
Garcia-Perez
,
A.
, and
Osornio-Rios
,
R. A.
,
2013
, “
Reconfigurable Monitoring System for Time-Frequency Analysis on Industrial Equipment Through STFT and DWT
,”
IEEE Trans. Ind. Inf.
,
9
(
2
), pp.
760
771
.
13.
Hassan
,
M.
,
Tarbutton
,
J.
,
Bayoumi
,
A.
, and
Shin
,
Y.-J.
,
2014
, “
Condition Monitoring of Helicopter Drive Shafts Using Quadratic-Nonlinearity Metric Based on Cross-Bispectrum
,”
IEEE Trans. Aerosp. Electron. Syst.
,
50
(
4
), pp.
2819
2829
.
14.
Jang
,
B.
,
Shin
,
C.
,
Powers
,
E. J.
, and
Grady
,
W. M.
,
2004
, “
Machine Fault Detection Using Bicoherence Spectra
,”
21st IEEE Instrumentation and Measurement Technology Conference
(
IMTC
), Como, Italy, May 18–20, pp. 1661–1666.
15.
Habib
,
M. R.
,
Hassan
,
M. A.
,
Seoud
,
R. A. A.
, and
Bayoumi
,
A. M.
,
2016
, “
Mechanical Fault Detection and Classification Using Pattern Recognition Based on Bispectrum Algorithm
,”
Advanced Technologies for Sustainable Systems
(Lecture Notes in Networks and Systems), Springer, Cham, Switzerland, pp.
147
165
.
16.
Gray
,
R. M.
,
2014
,
Entropy and Information Theory
,
Springer
, New York.
17.
Akansu
,
A.
, and
Haddad
,
R.
,
2001
,
Multiresolution Signal Decomposition
,
Academic Press
,
San Diego, CA
.
18.
Newland
,
D.
,
1993
,
An Introduction to Random Vibrations, Spectral and Wavelet Analysis
,
Longman Scientific & Technical
,
Harlow, UK
.
19.
Shukla
,
K.
, and
Tiwari
,
A.
,
2013
,
Efficient Algorithms for Discrete Wavelet Transform
, 1st ed., Springer-Verlag, London.
20.
Wang
,
D.
,
Tse
,
P. W.
, and
Tsui
,
K. L.
,
2013
, “
An Enhanced Kurtogram Method for Fault Diagnosis of Rolling Element Bearings
,”
Mech. Syst. Signal Process.
,
35
(
1–2
), pp.
176
199
.
21.
Kang
,
M.
,
Kim
,
J.
,
Wills
,
L. M.
, and
Kim
,
J.-M.
,
2015
, “
Time-Varying and Multiresolution Envelope Analysis and Discriminative Feature Analysis for Bearing Fault Diagnosis
,”
IEEE Trans. Ind. Electron.
,
62
(
12
), pp.
7749
7761
.
22.
Tra
,
V.
,
Uddin
,
S.
,
Kim
,
J.
,
Kim
,
C.-H.
, and
Kim
,
J.
,
2016
, “
Accelerating Envelope Analysis-Based Fault Diagnosis Using a General-Purpose Graphics Processing Unit
,”
Integrated Uncertainty in Knowledge Modelling and Decision Making
(Lecture Notes in Computer Science), Springer, Cham, Switzerland, pp.
409
420
.
23.
Lei
,
L.
, and
She
,
K.
,
2016
, “
Speaker Identification Using Wavelet Shannon Entropy and Probabilistic Neural Network
,”
12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery
(
ICNC-FSKD
), Changsha, China, Aug. 13–15, pp. 566–571.
24.
Karmeshu
,
J.
,
2003
,
Entropy Measures, Maximum Entropy Principle, and Emerging Applications
,
Springer
,
Berlin
, pp. 1–53.
25.
Chittora, A., and Patil, H. A., 2015, “
Classification of Normal and Pathological Infant Cries Using Bispectrum Features
,” 23rd European Signal Processing Conference (
EUSIPCO
), Nice, France, Aug. 31–Sept. 4, pp. 639–643.
26.
Totsky
,
A.
,
Zelensky
,
A.
, and
Kravchenko
,
V.
,
2015
,
Bispectral Methods of Signal Processing
,
Walter de Gruyter GmbH
,
Berlin
.
27.
McLachlan
,
G.
,
2004
,
Discriminant Analysis and Statistical Pattern Recognition
,
Wiley
,
Hoboken, NJ
.
28.
Bishop
,
C.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
New York
.
29.
Theodoridis
,
S.
, and
Koutroumbas
,
K.
,
2006
,
Pattern Recognition
,
Elsevier
,
Amsterdam, The Netherlands
.
30.
Gurney
,
K.
,
2014
,
An Introduction to Neural Networks
,
CRC Press
,
Boca Raton, FL
.
31.
Kumar
,
S.
,
2013
,
Neural Networks: A Classroom Approach
,
McGraw-Hill
,
New Delhi, India
.
32.
Ghaderi
,
A.
,
Mohammadpour
,
H. A.
,
Ginn
,
H. L.
, and
Shin
,
Y.-J.
,
2015
, “
High-Impedance Fault Detection in the Distribution Network Using the Time-Frequency-Based Algorithm
,”
IEEE Trans. Power Delivery
,
30
(
3
), pp.
1260
1268
.
You do not currently have access to this content.