We propose a novel modeling, estimation, and control framework for homogeneous charge compression ignition (HCCI) engines, which, by utilizing direct in-cylinder pressure sensing, can detect, and react to, the wide spectrum of combustion, thereby allowing for the prevention or even recovery from partial burn or misfire, while significantly improving the stability of transition control. For this, we first develop a discrete-time cyclic control-oriented model of the HCCI process, for which we completely replace the Arrhenius integral by quantities based on the in-cylinder pressure sensing. We then propose a nonlinear state feedback control based on the exact feedback linearization and the switching linear quadratic regulators (LQRs), and also present how the state and other quantities necessary for this control can be estimated by using the in-cylinder pressure sensing. We also provide a new modeling approach for heat transfer, which, through principal component analysis (PCA), can systematically allow us to choose most significant variables, thereby substantially improving control and estimation precision. Simulation studies using a continuous-time detailed HCCI engine model built on matlab/simulink and Cantera Toolbox are also performed to demonstrate the efficacy of our proposed framework for the scenarios of engine load transition and partial burn recovery with the enlarged regions-of-attraction with less stringent actuation limitation also shown.

References

1.
Shaver
,
G. M.
,
Gerdes
,
J. C.
, and
Roelle
,
M. J.
,
2009
, “
Physics-Based Modeling and Control of Residual-Affected HCCI Engines
,”
ASME J. Dyn. Syst., Meas., Control
,
131
(
2
), p.
021002
.
2.
Ravi
,
N.
,
Roelle
,
M. J.
,
Lian
,
H.-H.
,
Jungkunz
,
A. F.
,
Chang
,
C.-F.
,
Park
,
S.
, and
Gerdes
,
J. C.
,
2010
, “
Model-Based Control of HCCI Engines Using Exhaust Recompression
,”
IEEE Trans. Control Syst. Technol.
,
18
(
6
), pp.
1289
1302
.
3.
Ravi
,
N.
,
Liao
,
H.
,
Jungkunz
,
A. F.
,
Chang
,
C.
,
Song
,
H.
, and
Gerdes
,
J.
,
2011
, “
Modeling and Control of Exhaust Recompression HCCI Engine Using Split Injection
,”
ASME J. Dyn. Sys., Meas., Control
,
134
(
1
), p.
011016
.
4.
Ravi
,
N.
,
Liao
,
H.-H.
,
Jungkunz
,
A.
,
Song
,
H. H.
, and
Gerdes
,
J.
,
2012
, “
Modeling and Control of Exhaust Recompression HCCI: Split Fuel Injection for Cylinder-Individual Combustion Control
,”
IEEE Control Syst. Mag.
,
32
(
4
), pp.
26
42
.
5.
Liao
,
H.-H.
,
Widd
,
A.
,
Ravi
,
N.
,
Jungkunz
,
A.
,
Kang
,
J.-M.
, and
Gerdes
,
J.
,
2013
, “
Control of Recompression HCCI with a Three Region Switching Controller
,”
Control Eng. Pract.
,
21
(
2
), pp.
135
145
.
6.
Jungkunz
,
A. F.
,
Ravi
,
N.
,
Liao
,
H.-H.
,
Erlien
,
S. M.
, and
Gerdes
,
J. C.
,
2015
, “
An Analytical Method for Reducing Combustion Instability in Homogeneous Charge Compression Ignition Engines Through Cycle-to-Cycle Control
,”
Int. J. Engine Res.
,
16
(
3
), pp.
485
500
.
7.
Rausen
,
D. J.
,
Stefanopoulou
,
A. G.
,
Kang
,
J.-M.
,
Eng
,
J. A.
, and
Kuo
,
T.-W.
,
2005
, “
A Mean-Value Model for Control of Homogeneous Charge Compression Ignition (HCCI) Engines
,”
ASME J. Dyn. Syst., Meas., Control
,
127
(
3
), pp.
355
362
.
8.
Chiang
,
C.-J.
,
Stefanopoulou
,
A.
, and
Jankovic
,
M.
,
2007
, “
Nonlinear Observer-Based Control of Load Transitions in Homogeneous Charge Compression Ignition Engines
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
438
448
.
9.
Widd
,
A.
,
Ekholm
,
K.
,
Tunestal
,
P.
, and
Johansson
,
R.
,
2012
, “
Physics-Based Model Predictive Control of HCCI Combustion Phasing Using Fast Thermal Management and VVA
,”
IEEE Trans. Control Syst. Technol.
,
20
(
3
), pp.
688
699
.
10.
Hellstrom
,
E.
,
Stefanopoulou
,
A.
, and
Jiang
,
L.
,
2013
, “
Cyclic Variability and Dynamical Instabilities in Autoignition Engines With High Residuals
,”
IEEE Trans. Control Syst. Technol.
,
21
(
5
), pp.
1527
1536
.
11.
Jade
,
S.
,
Hellstrom
,
E.
,
Larimore
,
J.
,
Stefanopoulou
,
A. G.
, and
Jiang
,
L.
,
2014
, “
Reference Governor for Load Control in a Multicylinder Recompression HCCI Engines
,”
IEEE Trans. Control Syst. Technol.
,
22
(
4
), pp.
1408
1321
.
12.
Jade
,
S.
,
Larimore
,
J.
,
Hellstrom
,
E.
,
Stefanopoulou
,
A. G.
, and
Jiang
,
L.
,
2015
, “
Controlled Load and Speed Transitions in a Multicylinder Recompression Hcci Engine
,”
IEEE Trans. Control Syst. Technol.
,
23
(
3
), pp.
868
881
.
13.
Khalil
,
H. K.
,
1995
,
Nonlinear Systems
, 2nd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
14.
Heywood
,
J. B.
,
2000
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
15.
Shaver
,
G. M.
,
Roelle
,
M. J.
, and
Gerdes
,
J. C.
,
2006
, “
Modeling Cycle-to-Cycle Dynamics and Mode Transition in Hcci Engines With Variable Valve Actuation
,”
Control Eng. Pract.
,
14
(
3
), pp.
213
222
.
16.
Jolliffe
,
I. T.
,
2002
,
Principal Component Analysis
,
Springer-Verlag
,
New York
.
17.
Narendra
,
K. S.
, and
Balakrishnan
,
J.
,
1994
, “
A Common Lyapunov Function for Stable LTI Systems With Commuting A-Matrices
,”
IEEE Trans. Autom. Control
,
39
(
12
), pp.
2469
2471
.
18.
Song
,
H. H.
, and
Edwards
,
C. F.
,
2009
, “
Understanding Chemical Effects in Low-Load-Limit Extension of Homogeneous Charge Compression Ignition Engines Via Recompression Reaction
,”
Int. J. Engine Res.
,
10
(
4
), pp.
231
250
.
You do not currently have access to this content.