This paper presents the development of a robotic finger driven by nonconventional actuators, consisting of thin shape memory alloy (SMA) wires. In order to monitor and control the angles formed by each phalanx, a specific system for capturing and interpreting digital images was implemented. By image processing, this system is capable to determine the angles without the need for installation of phalanx rotation sensors, leading to weight and volume reduction of the prototype. For this artificial vision system, a simple camera with a fuzzy logic control technique was used, which was very effective in monitoring the position of the robotic finger.

References

1.
Silva
,
A. F. C.
,
dos Santos
,
A. J. V.
,
Souto
,
C. R.
,
de Araújo
,
C. J.
, and
da Silva
,
S. A.
,
2013
, “
Artificial Biometric Finger Driven by Shape-Memory Alloy Wires
,”
Artif. Organs
,
37
(11), pp.
965
972
.
2.
Bundhoo
,
V.
,
Haslam
,
E.
,
Birch
,
B.
, and
Park
,
E. J.
,
2009
, “
A Shape Memory Alloy-Based Tendon Driven Actuation System for Biomimetic Artificial Fingers—Part I: Design and Evaluation
,”
Robotica
,
27
(
1
), pp.
131
146
.
3.
De Laurentis
,
K. J.
, and
Mavroidis
,
C.
,
2002
, “
Mechanical Design of a Shape Memory Alloy Actuated Prosthetic Hand
,”
Technol. Health Care
,
10
, pp.
91
106
.https://pdfs.semanticscholar.org/59d8/85560bc2632b39b88f11b18ae18414c8f8e7.pdf
4.
Bundhoo
,
V.
, and
Park
,
E. J.
,
2005
, “
Design of an Artificial Muscle Actuated Finger Towards Biomimetic Prosthetic Hands
,”
International Conference on Advanced Robotics
(
ICAR
), Seattle, WA, July 18–25, pp. 368–375.
5.
Ko
,
J.
,
Jun
,
M. B.
,
Gilardi
,
G.
,
Haslam
,
E.
, and
Park
,
E. J.
,
2011
, “
Fuzzy Pwm-Pid Control of Contracting Antagonistic Shape Memory Alloy Muscle Pairs in an Artificial Finger
,”
Mechatronics
,
21
(7), pp.
1190
1202
.
6.
Farías
,
V.
,
Solis
,
L.
,
Meléndez
,
L.
,
García
,
C.
, and
Velázquez
,
R.
,
2009
, “
A Four-Fingered Robot Hand With Shape Memory Alloys
,”
IEEE Africon
, Nairobi, Kenya, Sept. 23–25, pp. 1–6.
7.
Andrianesis
,
K.
, and
Tzes
,
A.
,
2008
, “
Design of an Anthropomorphic Prosthetic Hand Driven by Shape Memory Alloy Actuators
,”
Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Scottsdale, AZ, Oct. 19–22, pp. 517–522.
8.
Engeberg
,
E.
,
Dilibal
,
S.
,
Vatani
,
M.
,
Choi
,
J.-W.
, and
Lavery
,
J.
,
2015
, “
Anthropomorphic Finger Antagonistically Actuated by SMA Plates
,”
Bioinspiration Biomimetics
,
10
, p.
056002
.
9.
Kheirikhah
,
M. M.
,
Khodayari
,
A.
, and
Tatlari
,
M.
,
2010
, “
Design a New Model for Artificial Finger by Using SMA Actuators
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Tianjin, China, Dec. 14–18, pp.
1590
1595
.
10.
Andrianesis
,
K.
, and
Tzes
,
A.
,
2015
, “
Development and Control of a Multifunctional Prosthetic Hand With Shape Memory Alloy Actuators
,”
J. Intell. Rob. Syst.
,
78
(
2
), pp.
257
289
.
11.
Lee
,
J. H.
,
Okamoto
,
S.
, and
Matsubara
,
S.
,
2012
, “
Development of Multi-Fingered Prosthetic Hand Using Shape Memory Alloy Type Artificial Muscle
,”
Comput. Technol. Appl.
,
3
, pp.
477
484
.https://pdfs.semanticscholar.org/0f90/4d22d676ec7d8df4b3033a48fa1d34e22e1b.pdf
12.
Otsuka
,
K.
, and
Wayman
,
C. M. M.
,
1998
,
Shape Memory Materials
,
Cambridge University Press
,
New York
.
13.
Lagoudas
,
D. C.
,
2008
,
Shape Memory Alloys: Modeling and Engineering Applications
,
Springer
,
New York
, p.
446
.
14.
Choi
,
S.
,
2006
, “
Position Control of a Single-Link Mechanism Activated by Shape Memory Alloy Springs: Experimental Results
,”
Smart Mater. Struct.
,
15
, pp.
51
58
.
15.
Janocha
,
H.
,
2007
,
Adaptronics and Smart Structures: Basics, Materials, Design and Applications
,
Springer
,
New York
, p.
554
.
16.
Ahn
,
K. K.
, and
Nguyen
,
B. K.
,
2008
, “
Modeling and Control of Shape Memory Alloy Actuators Using Preisach Model, Genetic Algorithm and Fuzzy Logic
,”
Mechatronics
,
18
(3), pp.
141
152
.
17.
Nguyen
,
B. K.
, and
Ahn
,
K. K.
,
2009
, “
Feedforward Control of Shape Memory Alloy Actuators Using Fuzzy-Based Inverse Preisach Model
,”
IEEE Trans. Control Syst. Technol.
,
17
(2), pp.
434
441
.
18.
Ahn
,
K. K.
, and
Nguyen
,
B. K. A.
,
2006
, “
Position Control of Shape Memory Alloy Actuators Using Self-Tuning Fuzzy Pid Controller
,”
Int. J. Control, Autom. Syst.
,
4
(6), pp.
756
762
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.4732&rep=rep1&type=pdf
19.
Rohani
,
O.
,
Yousefi-Koma
,
A.
,
Rezaeeian
,
A.
, and
Doosthoseini
,
A.
,
2008
, “
Force Control of Shape Memory Alloy Wire Using Fuzzy Controller
,”
Proc. SPIE
,
6926
, p.
692611
.
20.
Kumagai
,
A.
,
Liu
,
T.-T.
, and
Hozian
,
P. A.
,
2006
, “
Control of Shape Memory Alloy Actuators With a Neuro-Fuzzy Feedforward Model Element
,”
J. Intell. Manuf.
,
17
(1), pp.
45
56
.
21.
Shaw
,
J.
,
Pan
,
R.
, and
Huang
,
T. W.
,
2011
, “
Adaptive Fuzzy Sliding Mode Control of X–Y Platform Driven by Shape Memory Alloy
,”
J. Intell. Mater. Syst. Struct.
,
22
, pp.
1803
1810
.
22.
Simoes
,
M. G.
, and
Shaw
,
I. S.
,
2007
,
Fuzzy Control and Modeling
, 2nd ed.,
Publishing House
,
São Paulo, Brazil
.
You do not currently have access to this content.