An online fast path following control algorithm subject to contouring error tolerance and other prototypical constraints, analogous to a racing car within track boundaries, is presented. A receding horizon quadratic programming (QP) for real-time implementation on electromechanical systems is proposed. A key feature of the algorithm is that the challenging constrained minimal-time optimization is approximated by minimizing the distance between an unattainable target and actual location when moving along the contour, mimicking pursuing rabbit lures in greyhound racing. Modeling errors and other uncertainties in implementation are compensated for by observer state feedback, which provides real-time updates of initial states for every receding horizon optimization. Applying the proposed online method, the requirement of an accurate model from conventional offline trajectory planning methods is relaxed. The proposed method is demonstrated by experimental results from a 1 kHz sampling rate implementation on a multi-axis nanolithographic position system.

References

1.
McNab
,
R.
, and
Tsao
,
T.
,
2000
, “
Receding Time Horizon Linear Quadratic Optimal Control for Multi Axis Contour Tracking Motion Control
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
2
), pp.
375
380
.
2.
Uchiyama
,
N.
,
2011
, “
Discrete-Time Model Predictive Contouring Control for Biaxial Feed Drive Systems and Experimental Verification
,”
Mechatronics
,
21
(
6
), pp.
918
926
.
3.
Lam
,
D.
,
Manzie
,
C.
, and
Good
,
M.
,
2013
, “
Model Predictive Contouring Control for Biaxial Systems
,”
IEEE Trans. Control Syst. Technol.
,
21
(
2
), pp.
552
559
.
4.
Yang
,
S.
,
Ghasemi
,
A. H.
,
Lu
,
X.
, and
Okwudire
,
C. E.
,
2015
, “
Pre-Compensation of Servo Contour Errors Using a Model Predictive Control Framework
,”
Int. J. Mach. Tools Manuf.
,
98
, pp.
50
60
.
5.
Tang
,
L.
, and
Landers
,
R. G.
,
2012
, “
Predictive Contour Control With Adaptive Feed Rate
,”
IEEE/ASME Trans. Mechatronics
,
17
(
4
), pp.
669
679
.
6.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
,
2001
, “
High Speed CNC System Design—Part I: Jerk Limited Trajectory Generation and Quintic Spline Interpolation
,”
Int. J. Mach. Tools Manuf.
,
41
(
9
), pp.
1323
1345
.
7.
Verscheure
,
D.
,
Demeulenaere
,
B.
,
Swevers
,
J.
,
Schutter
,
J. D.
, and
Diehl
,
M.
,
2009
, “
Time-Optimal Path Tracking for Robots: A Convex Optimization Approach
,”
IEEE Trans. Autom. Control
,
54
(
10
), pp.
2318
2327
.
8.
Altintas
,
Y.
, and
Erkorkmaz
,
K.
,
2003
, “
Feedrate Optimization for Spline Interpolation in High Speed Machine Tools
,”
CIRP Ann.-Manuf. Technol.
,
52
(
1
), pp.
297
302
.
9.
Bobrow
,
J. E.
,
Dubowsky
,
S.
, and
Gibson
,
J. S.
,
1985
, “
Time-Optimal Control of Robotic Manipulators Along Specified Paths
,”
Int. J. Rob. Res.
,
4
(
3
), pp.
3
17
.
10.
Erkorkmaz
,
K.
, and
Heng
,
M.
,
2008
, “
A Heuristic Feedrate Optimization Strategy for NURBS Toolpaths
,”
CIRP Ann.-Manuf. Technol.
,
57
(
1
), pp.
407
410
.
11.
Dong
,
J.
, and
Stori
,
J. A.
,
2007
, “
Optimal Feed-Rate Scheduling for High-Speed Contouring
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
63
76
.
12.
Ernesto
,
C. A.
, and
Farouki
,
R. T.
,
2012
, “
High-Speed Cornering by CNC Machines Under Prescribed Bounds on Axis Accelerations and Toolpath Contour Error
,”
Int. J. Adv. Manuf. Technol.
,
58
(
1
), pp.
327
338
.
13.
Zhang
,
K.
,
Yuan
,
C. M.
,
Gao
,
X. S.
, and
Li
,
H.
,
2012
, “
A Greedy Algorithm for Feedrate Planning of CNC Machines Along Curved Tool Paths With Confined Jerk
,”
Rob. Comput.-Integr. Manuf.
,
28
(
4
), pp.
472
483
.
14.
Ridwan
,
F.
, and
Xu
,
X.
,
2013
, “
Advanced CNC System With In-Process Feed-Rate Optimisation
,”
Rob. Comput.-Integr. Manuf.
,
29
(
3
), pp.
12
20
.
15.
Bosetti
,
P.
, and
Bertolazzi
,
W.
,
2014
, “
Feed-Rate and Trajectory Optimization for CNC Machine Tools
,”
Rob. Comput.-Integr. Manuf.
,
30
(
6
), pp.
667
677
.
16.
Devasia
,
S.
,
2011
, “
Nonlinear Minimum-Time Control With Pre- and Post-Actuation
,”
Automatica
,
47
(
7
), pp.
1379
1387
.
17.
Dong
,
J.
,
Ferreira
,
P. M.
, and
Stori
,
J. A.
,
2007
, “
Feed-Rate Optimization With Jerk Constraints for Generating Minimum-Time Trajectories
,”
Int. J. Mach. Tools Manuf.
,
47
(
12
), pp.
1941
1955
.
18.
Gasparetto
,
A.
,
Lanzutti
,
A.
,
Vidoni
,
R.
, and
Zanotto
,
V.
,
2012
, “
Experimental Validation and Comparative Analysis of Optimal Time-Jerk Algorithms for Trajectory Planning
,”
Rob. Comput.-Integr. Manuf.
,
28
(
2
), pp.
164
181
.
19.
Guo
,
J. X.
,
Zhang
,
K.
,
Zhang
,
Q.
, and
Gao
,
X. S.
,
2013
, “
Efficient Time-Optimal Feedrate Planning Under Dynamic Constraints for a High-Order CNC Servo System
,”
Comput.-Aided Des.
,
45
(
12
), pp.
1538
1546
.
20.
Bharathi
,
A.
, and
Dong
,
J.
,
2015
, “
Feedrate Optimization and Trajectory Control for Micro/Nanopositioning Systems With Confined Contouring Accuracy
,”
Proc. Inst. Mech. Eng., Part B
,
229
(
7
), pp.
1193
1205
.
21.
Fan
,
W.
,
Fang
,
C. P.
,
Ye
,
S. S.
, and
Zhang
,
X.
,
2015
, “
Convex Optimisation Method for Time-Optimal Feedrate Planning With Complex Constraints
,”
Proc. Inst. Mech. Eng., Part B
,
229
(Suppl.
1
), pp.
111
120
.
22.
Lam
,
D.
,
Manzie
,
C.
,
Good
,
M. C.
, and
Bitmead
,
R. R.
,
2015
, “
Receding Horizon Time-Optimal Control for a Class of Differentially Flat Systems
,”
Syst. Control Lett.
,
83
, pp.
61
66
.
23.
Lu
,
L.
,
Yao
,
B.
, and
Lin
,
W.
,
2013
, “
A Two-Loop Contour Tracking Control for Biaxial Servo Systems With Constraints and Uncertainties
,” American Control Conference (
ACC
), Washington, DC, June 17–19, pp.
6468
6473
.
24.
Tajima
,
S.
, and
Sencer
,
B.
,
2016
, “
Kinematic Corner Smoothing for High Speed Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
108
, pp.
27
43
.
25.
Duan
,
M.
, and
Okwudire
,
C.
,
2016
, “
Minimum-Time Cornering for CNC Machines Using an Optimal Control Method With NURBS Parameterization
,”
Int. J. Adv. Manuf. Technol.
,
85
(
5–8
), pp.
1405
1418
.
26.
Tang
,
L.
, and
Landers
,
R. G.
,
2013
, “
Multiaxis Contour Control—The State of the Art
,”
IEEE Trans. Control Syst. Technol.
,
21
(
6
), pp.
1997
2010
.
27.
Chang
,
Y. C.
, and
Tsao
,
T.
,
2014
, “
Minimum-Time Contour Tracking With Model Predictive Control Approach
,” American Control Conference (
ACC
), Portland, OR, June 4–6, pp.
1821
1826
.
28.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2009
,
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
.
29.
Rao
,
C. V.
,
Wright
,
S. J.
, and
Rawlings
,
J. B.
,
1998
, “
Application of Interior-Point Methods to Model Predictive Control
,”
J. Optim. Theory Appl.
,
99
(
3
), pp.
723
757
.
30.
Zhang
,
F.
,
2006
,
The Schur Complement and Its Applications
, Vol.
4
,
Springer Science and Business Media
,
New York
.
31.
John
,
E.
, and
Yldrm
,
E. A.
,
2008
, “
Implementation of Warm-Start Strategies in Interior-Point Methods for Linear Programming in Fixed Dimension
,”
Comput. Optim. Appl.
,
41
(
2
), pp.
151
183
.
32.
Wang
,
Y.
, and
Boyd
,
S.
,
2010
, “
Fast Model Predictive Control Using Online Optimization
,”
IEEE Trans. Control Syst. Technol.
,
18
(
2
), pp.
267
278
.
33.
Fesperman
,
R.
,
Ozturk
,
O.
,
Hocken
,
R.
,
Ruben
,
S.
,
Tsao
,
T.
,
Phipps
,
J.
,
Lemmons
,
T.
,
Brien
,
J.
, and
Caskey
,
G.
,
2012
, “
Multi-Scale Alignment and Positioning System-Maps
,”
Precis. Eng.
,
36
(
4
), pp.
517
537
.
34.
Ruben
,
S. D.
,
2010
, “
Modeling, Control, and Real-Time Optimization for a Nano-Precision System
,”
Ph.D. dissertation
, University of California, Los Angeles, Los Angeles, CA.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.224.7189&rep=rep1&type=pdf
35.
Bobroff
,
N.
,
1993
, “
Critical Alignments in Plane Mirror Interferometry
,”
Precis. Eng.
,
15
(
1
), pp.
33
38
.
36.
Ruben
,
S. D.
,
Tsao
,
T.
,
Hocken
,
R. J.
,
Fesperman
,
R.
,
Ozturk
,
O.
,
Brien
,
J.
, and
Caskey
,
G.
,
2009
, “
Mechatronics and Control of a Precision Motion Stage for Nano-Manufacturing
,”
ASME
Paper No. DSCC2009-2761.
37.
Moghadam
,
H. Z.
,
Landers
,
R. G.
, and
Balakrishnan
,
S. N.
,
2014
, “
Hierarchical Optimal Contour Control of Motion Systems
,”
Mechatronics
,
24
(
2
), pp.
98
107
.
You do not currently have access to this content.