In this work, we study the dynamic response of the most popular unstable control problem, the inverted pendulum in terms of classical control theory. The theoretical and experimental results presented here explore the relationship between changes in the indirect tuning parameters from the linear quadratic regulator (LQR) design, and the final system performance effected using the feedback gains specified as the LQR weight constraints are changed. First, we review the development of the modern control approach using full state-feedback for stabilization and regulation, and present simulation and experimental comparisons as we change the optimization targets for the overall system and as we change one important system parameter, the length of the pendulum. Second, we explore the trends in the response by developing the generalized root locus for the system using incremental changes in the LQR weights. Next, we present a family of curves showing the local root locus and develop relationships between the weight changes and the system performance. We describe how these locus trends provide insight that is useful to the control designer during the effort to optimize the system performance. Finally, we use our general results to design an effective feedback controller for a new system with a longer pendulum and present experiment results that demonstrate the effectiveness of our analysis.

References

1.
Boubaker
,
O.
,
2013
, “
The Inverted Pendulum Benchmark in Non-Linear Control Theory
,”
Int. J. Adv. Rob. Syst.
,
10
(
233
), pp.
1
9
.
2.
Anderson
,
G. L.
, and
Tadjbakhsh
,
I. G.
,
1989
, “
Stabilization of Zeigler's Pendulum by Means of the Method of Vibrational Control
,”
J. Math. Anal. Appl.
,
143
(
1
), pp.
198
223
.
3.
Butikov
,
E. I.
,
2001
, “
On the Dynamic Stabilization of the Inverted Pendulum
,”
Am. J. Phys.
,
69
(
7
), pp.
755
768
.
4.
Shin
,
H. K.
, and
Kim
,
B. K.
,
2014
, “
Energy-Efficient Gait Planning and Control for Biped Robots Utilizing the Allowable ZMP Region
,”
IEEE Trans. Rob.
,
30
(
4
), pp.
986
993
.
5.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2001
, “
The 3D Linear Inverted Pendulum Mode: A Simple Modeling for a Biped Walking Pattern Generation
,”
International Conference on Intelligent Robots and Systems
(
IROS
), Maui, HI, Oct. 29–Nov. 3, pp.
239
246
.
6.
Kim
,
J. Y.
,
Park
,
W. I. I. I.
, and
Oh
,
J. H.
,
2007
, “
Walking Control Algorithm of Biped Humanoid Robot on Uneven and Inclined Floor
,”
J. Intell. Rob. Syst.
,
48
(
4
), pp.
457
484
.
7.
Kuo
,
A. K.
, and
Maxwell
,
J. D.
,
2010
, “
Dynamic Principles of Gait and Their Clinical Implications
,”
J. Am. Phys. Ther. Assoc.
,
90
(
2
), pp.
157
174
.
8.
Kim
,
B. W.
, and
Park
,
B. S.
,
2016
, “
Robust Control for the Segway With Unknown Control Coefficient and Model Uncertainties
,”
Sensors
,
16
(
7
), p.
1000
.
9.
Ibanez
,
C. A.
,
Frias
,
O. G.
, and
Castanon
,
M. S.
,
2005
, “
Lyapunov-Based Controller for the Inverted Pendulum Cart System
,”
Nonlinear Dyn.
,
40
(
4
), pp.
367
374
.
10.
Yi
,
J.
, and
Yubazaki
,
N.
,
2000
, “
Stabilization Fuzzy Control of Inverted Pendulum Systems
,”
Artif. Intell. Eng.
,
14
(
2
), pp.
153
163
.
11.
Ahmad
,
S.
,
Siddique
,
N. H.
, and
Tokhi
,
M. O.
,
2011
, “
A Modular Fuzzy Control Approach for Two-Wheeled Wheelchair
,”
J. Intell. Robot. Syst.
,
64
(
3–4
), pp.
401
426
.
12.
Ostertag
,
E.
, and
Ostertag
,
C.
,
1993
, “
Fuzzy Control of an Inverted Pendulum With Fuzzy Compensation of Friction Forces
,”
Int. J. Syst. Sci.
,
24
(
10
), pp.
1915
1921
.
13.
Deepa
,
S. N.
,
2010
, “
Investigating Stability a Fuzzy Logic Controller Based Inverted Pendulum Model
,”
Int. J. Comput, Internet Manage.
,
18
(
2
), pp.
55
62
.http://www.ijcim.th.org/past_editions/2010V18N2/Paper_8.pdf
14.
Du
,
L.
, and
Cao
,
F.
,
2015
, “
Nonlinear Controller Design of the Inverted Pendulum System Based on Extended State Observer
,”
International Conference on Automation, Mechanical Control and Computational Engineering
(
AMCCE
), Ji’nan, China, Apr. 24–26, pp.
207
212
.
15.
Sonone
,
S. S.
, and
Patel
,
N. V.
,
2013
, “
LQR Controller Design for Stabilization of Cart Model Inverted Pendulum
,”
Int. J. Sci. Res.
,
4
(7), pp.
1172
1176
.https://pdfs.semanticscholar.org/f9c3/a179d329ed01e4528643d72ef789a78976d7.pdf
16.
Kumar
,
E. V.
, and
Jerome
,
J.
,
2013
, “
Robust LQR Controller Design for Stabilizing and Trajectory Tracking of Inverted Pendulum
,”
Procedia Eng.
,
64
, pp.
169
178
.
17.
Eide
,
R.
,
Egelid
,
P. M.
,
Stamsø
,
A.
, and
Karimi
,
H. R.
,
2011
, “
LQG Control Design for Balancing an Inverted Pendulum Mobile Robot
,”
Intell. Control Autom.
,
2
, pp.
160
166
.
18.
Kumar
,
P.
,
Mehrotra
,
O. N.
, and
Mahto
,
J.
,
2012
, “
Controller Design of Inverted Pendulum Using Pole Placement Method and LQR
,”
Int. J. Res. Eng. Technol.
,
1
, pp.
532
538
.
19.
Henmi
,
T.
,
Park
,
Y.
,
Deng
,
M.
, and
Inoue
,
A.
,
2010
, “
Stabilization Controller for a Cart-Type Inverted Pendulum Via a Partial Linearization Method
,”
International Conference on Modelling, Identification and Control
, Okayama, Japan, July 17–19, pp.
248
253
.https://ieeexplore.ieee.org/document/5553559
20.
Astrom
,
K. L.
, and
Furuta
,
K.
,
2000
, “
Swinging Up a Pendulum by Energy Control
,”
Automatica
,
36
(
2
), pp.
287
295
.
21.
Deng
,
M.
,
Inoue
,
A.
,
Nakagawa
,
S.
,
Henmi
,
T.
,
Ueki
,
N.
, and
Hirashima
,
Y.
,
2004
, “
Experimental Study on Simultaneous Swing-Up of Parallel Double Inverted Pendulum
,”
23rd Chinese Control Conference
, pp.
1627
1631
.
22.
Henmi
,
T.
,
Deng
,
M.
,
Inoue
,
A.
,
Ueki
,
N.
, and
Hirashima
,
Y.
,
2004
, “
Swing-Up Control of a Serial Double Inverted Pendulum
,”
American Control Conference
(
ACC
), Boston, MA, June 30–July 2, pp.
3992
3997
.
23.
Chetergee
,
D.
,
Patra
,
A.
, and
Joglekar
,
H. K.
,
2002
, “
Swing-Up and Stabilization of a Cart-Pendulum System Under Restricted Cart Track Length
,”
Syst. Control Lett.
,
47
(
4
), pp.
355
364
.
24.
An
,
W.
, and
Li
,
Y.
,
2013
, “
Simulation and Control of a Two-Wheeled Self-Balancing Robot
,”
IEEE International Conference on Robotics and Biomimetic
(
ROBIO
), Shenzhen, China, Dec. 12–14, pp.
456
461
.
25.
Lauwers
,
T. B.
,
Kantor
,
G. A.
, and
Hollis
,
R. L.
,
2006
, “
A Dynamically Stable Single-Wheeled Mobile Robot With Inverse Mouse-Ball Drive
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Orlando, FL, May 15–19, pp.
2884
2889
.
26.
Grasser
,
F.
,
D'Arrigo
,
A.
,
Colombi
,
S.
, and
Rufer
,
A. C.
,
2002
, “
Joe: A Mobile, Inverted Pendulum
,”
IEEE Trans. Ind. Electron
,
49
(
1
), pp.
107
114
.
27.
Lan
,
Y.
, and
Minrui
,
F.
,
2011
, “
Design of State-Feedback Controller by Pole Placement for a Coupled Set of Inverted Pendulums
,”
IEEE
International Conference on Electronic Measurements and Instruments
, Chengdu, China, Aug. 16–19, pp.
69
73
.
28.
Arif
,
M. S.
, and
Kalyoncu
,
M.
,
2016
, “
Optimal Tuning of a LQR Controller for an Inverted Pendulum Using the Bees Algorithm
,”
J. Autom. Control Eng.
,
4
(5), pp.
384
387
.https://www.researchgate.net/publication/292988474_Optimal_Tuning_of_a_LQR_Controller_for_an_Inverted_Pendulum_Using_The_Bees_Algorithm
29.
Pham
,
D. T.
,
Ghanbarzadeh
,
A.
,
Koç
,
E.
,
Otri
,
S.
,
Rahim
,
S.
, and
Zaidi
,
M.
,
2006
, “
The Bees Algorithm—A Novel Tool for Complex Optimisation Problems
,”
Intell. Prod. Mach. Syst.
, pp.
454
459
.
30.
Vasudevan
,
H.
,
Dollar
,
A. M.
, and
Morrel
,
J. B.
,
2015
, “
Design for Control of Wheeled Inverted Pendulum Platforms
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041005
.
31.
Reeves
,
N. P.
,
Pathak
,
P.
,
John M. Popovich
,
J. M.
, Jr.
, and
Vijayanagar
,
V.
,
2013
, “
Limits in Motor Control Bandwidth During Stick Balancing
,”
J. Neurophysiol.
,
109
(
10
), pp.
2523
2527
.
32.
Milton
,
J.
,
Cabrera
,
J. L.
,
Ohira
,
T.
,
Tajima
,
Yukinori
,
S. T.
,
Eurich
,
C. W.
, and
Campbell
,
S. A.
,
2009
, “
The Time-Delayed Inverted Pendulum: Implications for Human Balance Control
,”
Am. Inst. Phys.
,
19
(
2
), pp.
1
12
.
33.
Maravall
,
D.
,
2004
, “
Control and Stabilization of the Inverted Pendulum Via Vertical Forces
,”
Robotic Welding, Intelligence and Automation
(Lecture Notes in Control and Information Science, Vol.
299
), Springer, Berlin, pp.
190
211
.
You do not currently have access to this content.